Airbus controla un helicóptero desde una «tablet», como si de un pequeño drone se tratara

El vuelo del helicóptero es de los más complejos y de los que más se tarda en aprender, en comparación con las aeronaves de ala fija, o del autogiro. Es un vuelo exigente, requiere coordinación… y Airbus ha ensayado lo que ha denominado en su nota de prensa una «nueva interfaz simplificada humano-máquina».

Básicamente viene a ser algo así como manejar una aeronave tripulada igual que se maneja una aeronave no tripulada, como las que se pueden manejar desde un teléfono móvil o una tablet. Algo como lo que hemos descrito en algunas ocasiones cuando hemos hablado de las cabinas con un solo tripulante, que pasaba por integrar este tipo de mandos en las aeronaves. Y que, sin duda, Airbus planea integrar en sus aeronaves de movilidad aérea urbana CityAirbus. Y claro, por qué no, entendemos que en todas las demás, como por ejemplo, cockpits con un solo piloto, como el que prometía Faury para el A350.

El sistema ha sido capaz de operar de forma casi autónoma la aeronave, e incorpora tanto un control de seguridad que permite al piloto retomar el mando de la aeronave, como un sistema que detecta obstáculos y permite calcular rutas alternativas para evitar la colisión. Esto es, incorpora un sistema de «ver y evitar», o sense and avoid, que tanto hemos dicho que será imprescindible en caso de querer integrar drones y/o aeronaves la llamada movilidad aérea avanzada o movilidad aérea urbana en el espacio aéreo con otras aeronaves tripuladas.

Previamente, hace un mes, Airbus había volado un sistema simplificado, destinado según la nota de prensa a su CityAirbus, que pasaba de controlar el vuelo del helicóptero con dos palancas (cíclico y colectivo) más pedales a una sola palanca, con lo que todos los mandos quedaban centralizados en uno sólo, que distribuye a cada mando las órdenes necesarias, pero introducidas a través de una única palanca.

Este tipo de sistemas busca maximizar la seguridad en vuelo, y reducir los riesgos, mejorando la seguridad, cosa que como ingeniero me fascina. Como piloto, la sensación es que todo esto hará el volar mucho más aburido…

Vamos con las notas de prensa:

Al alcance de tus dedos: Airbus vuela un helicóptero completamente automatizado con una tableta.

Airbus ha probado con éxito una nueva interfaz hombre-máquina (HMI) simplificada junto con funciones autónomas avanzadas a través de un proyecto llamado Vertex. Estas tecnologías, desarrolladas por Airbus UpNext, están controladas por una tableta con pantalla táctil y tienen como objetivo simplificar la preparación y gestión de misiones, reducir la carga de trabajo de los pilotos de helicópteros y aumentar aún más la seguridad.

El Airbus Helicopters’ FlightLab voló completamente automatizado desde el carreteo: carrteo, despegue, crucero, aproximación y aterrizaje fueron realizados mediante comandos en la tablet, durante un vuelo de prueba de una hora siguiendo una ruta predefinida. Durante este vuelo, el piloto supervisó el sistema que es capaz de detectar obstáculos imprevistos y recalcular automáticamente una ruta de vuelo segura. Si es necesario, el piloto puede anular fácilmente los controles a través de la tableta y reanudar la misión posteriormente. El período de prueba de vuelo se llevó a cabo desde el 27 de octubre hasta el 22 de noviembre en las instalaciones de Airbus Helicopters en Marignane, Francia.

Esta exitosa demostración de un vuelo completamente autónomo desde el despegue hasta el aterrizaje es un gran paso hacia la reducción de la carga de trabajo de los pilotos y la interfaz hombre-máquina simplificada que el equipo de Movilidad Urbana Aérea de Airbus tiene la intención de implementar en CityAirbus NextGen. También podría tener aplicaciones inmediatas para helicópteros en vuelos a baja altura cerca de obstáculos gracias a la información proporcionada por los lidars a bordo.

Michael Augello, CEO de Airbus UpNext

Airbus Helicopters continuará desarrollando las diferentes tecnologías que componen Vertex: sensores y algoritmos basados en visión para la conciencia situacional y detección de obstáculos; fly-by-wire para un piloto automático mejorado; y una interfaz avanzada hombre-máquina, en forma de pantalla táctil y visor montado en la cabeza, para el monitoreo y control en vuelo.

Airbus Helicopters pionera en volar con mandos amigables para eVTOLs.

El FlightLab de Airbus Helicopters ha probado con éxito un sistema de control de vuelo eléctrico en preparación de una nueva interfaz hombre-máquina (HMI) que equipará CityAirbus NextGen, el prototipo de eVTOL de Airbus. Este hito representa un paso importante hacia una nueva generación de aeronaves de movilidad aérea urbana eléctrica.

Los controles del piloto se han simplificado considerablemente gracias a la asistencia de pilotaje mejorada proporcionada por el sistema de control de vuelo eléctrico. Por primera vez en la industria de los helicópteros, una única palanca de control reemplaza a los tres controles convencionales del piloto (cíclico, pedales, colectivo) y es capaz de controlar todos los ejes de la aeronave. Utilizando la palanca única, el piloto puede realizar todas las maniobras: despegue y aterrizaje, ascenso, descenso, aceleración, desaceleración, giro y aproximación.

La palanca única ocupa menos espacio, ofrece una mejor visibilidad al piloto y se combina con una HMI revisada que utiliza pantallas simples, proporcionando una selección de información específicamente adaptada a los eVTOL.

Desde el principio, diseñamos este sistema teniendo en cuenta todos los parámetros de certificación, ya que será un gran avance en la validación del diseño de nuestro eVTOL de movilidad aérea urbana, CityAirbus NextGen. La ventaja de un sistema de control de vuelo eléctrico es enorme, especialmente cuando se trata de reducir la carga de trabajo del piloto y, en última instancia, mejorar la seguridad de la misión. También es un gran ejemplo de cómo nuestros demostradores se utilizan para madurar los bloques tecnológicos necesarios para preparar el futuro del vuelo vertical.

Tomasz Krysinski, Jefe de Investigación e Innovación en Airbus Helicopters

Después del éxito de la campaña de pruebas de vuelo, Airbus Helicopters está trabajando en finalizar los detalles de este nuevo sistema antes de realizar nuevas pruebas en el marco de Vertex, un proyecto realizado en colaboración con Airbus UpNext que avanzará aún más en la autonomía al gestionar la navegación y simplificar la preparación de misiones.

Airbus ha sido uno de los pioneros en explorar cómo la propulsión eléctrica puede ayudar a impulsar el desarrollo de nuevos tipos de vehículos aéreos. En septiembre de 2021, la compañía presentó su prototipo de eVTOL totalmente eléctrico, CityAirbus NextGen. Airbus está desarrollando una solución avanzada de movilidad aérea con eVTOLs, no solo para ofrecer un nuevo servicio de movilidad, sino también como un paso importante en su misión de reducir las emisiones en la aviación en toda su gama de productos.

Rotor completa la campaña de ensayos de vuelo su helicóptero no tripulado y autónomo

Desde que habláramos por primera vez de un helióptero autónomo allá por 2009 hasta hace casi exáctamente un año hablábamos de los vuelos autónomos de Sikorsky con su Black Hawk, hemos hablado en numerosas ocasiones de esta tecnología, incluso capaz de aterrizar en plataformas móviles, que promete revolucionar las tareas de las 3D: dull, dangerous and dirty. Esto es, misiones largas y aburridas (vigilancia, peinar zonas en misiones de búsqueda), peligrosas (un espacio aéreo especialmente disputado y sobre el que no se tiene superioridad aérea o hay exceso de misiles anti aéreos sin neutralizar o antiincendios) y sucias (guerra NBQ – Nuclear Bacteriológica Química).

Trece años después la tecnología sigue avanzando, y sigue siendo una promesa de futuro. Aunque parece que cada vez más realista. Hoy toca Robinson 22 de Rotor, que busca desarrollar una aeronave VTOL (de despegue y aterrizaje vertical) con una carga de pago de 550kg para labores anti-incendios, agrícolas, entrega de material en zonas peligrosas, ayuda humanitaria o aerotaxi como solución de movilidad aérea avanzada. Además, pretende que en 2024 esté certificada y pueda entrar en servicio realizando labores comerciales SIN personas a bordo (es decir, todas las que hemos descrito, menos las de aerotaxi). La certificación para vuelos con pasajeros se espera para más tarde.

Como comentarios personales, la utilidad como antiincendios parece limitada, por la carga útil, mientras que en el mercado de la movilidad aérea avanzada (o movilidad aérea urbana )podría tener sentido, e incluso ser relativamente económica, en comparación con los desarrollos de otros competidores, al partir de una aeronave ya certificada, y que «sólo» necesita un suplemento de certificado de tipo para su sistema autónomo no tripulado. Por cierto, también nos deja una pista del coste que tendrían estas aeronaves llamadas a solventar los problemas de congestión de tráfico en las ciudades… al menos a los bolsillos con mayor poder adquisitivo. Eso sí, con una tecnología probada, viable, y con una autonomía hasta ahora inalcanzable por las soluciones eléctricas.

Nota de prensa de Rotor

Rotor Technologies, Inc., desarrollador de aeronaves autónomas de despegue y aterrizaje vertical (VTOL), ha completado la primera campaña de pruebas de vuelo sin tripulación de un helicóptero civil a escala real.

La campaña se realizó con dos helicópteros autónomos Rotor R220Y. El R220Y es una plataforma experimental basada en el popular helicóptero Robinson R22 de dos plazas, con todas las funciones del helicóptero automatizadas por la tecnología de Rotor.

Dos R220Y han registrado más de 20 horas de vuelo y más de 80 horas de funcionamiento del motor durante la campaña de ensayos. Estos vuelos demostraron con éxito los sistemas de control de vuelo de Rotor, los modos autónomos de vuelo a punto fijo y velocidad, y los sistemas ver-y-evitar basados en visión artificial. La campaña también desarrolló la capacidad de vuelo a larga distancia de la aeronave a través de pruebas en vuelo de equipos de radio de largo alcance y enlaces de comunicación móvil LTE, aunque todos los vuelos se realizaron dentro de un radio limitado y en línea de visión directa de una estación de control terrestre.

Este es un hito importante hacia el vuelo completamente autónomo y una prueba de nuestra capacidad para desarrollar una autonomía que sea segura y confiable para operaciones de utilidad y pasajeros. Nuestro sistema de piloto de IA ya es de nivel experto en tareas como el control de vuelo de precisión y la navegación en condiciones de baja visibilidad, y estamos aumentando sus capacidades cada día.

Dr. Héctor Xu, fundador y CEO de Rotor

Cuando el sistema autónomo se desactiva, el helicóptero no requiere de un piloto a bordo, y puede ser controlado remotamente.

Estamos emocionados de ver los helicópteros Robinson utilizados por Rotor como plataforma para la innovación. Creemos que nuestra experiencia en vuelo y capacidad de fabricación posicionará a Robinson como un jugador clave en la próxima generación de aviación VTOL.

David Smith, Vicepresidente de Operaciones de Robinson

El siguiente paso

Rotor está comercializando su tecnología de autonomía con el desarrollo del R550X, un helicóptero utilitario no tripulado basado en el Robinson R44 Raven II. El R550X contará con una capacidad de carga útil de 1.212 libras (550 kg) y más de tres horas de autonomía. El R550X está diseñado para realizar operaciones peligrosas como lucha contra incendios, fumigación de cultivos, construcción, ayuda humanitaria y entrega remota de carga sin poner en riesgo la vida de los pilotos.

Estamos llevando al mercado comercial el VTOL no tripulado de mayor capacidad de carga disponible en el mundo. Estamos tomando toda la tecnología que hemos desarrollado en el R220Y y la estamos colocando en una plataforma similar, e incluso más capaz. Estamos trabajando con un grupo de socios cercanos para poner el R550X en operación con fines de lucro en 2024. Ninguna otra compañía se acerca a realizar operaciones comerciales con un helicóptero autónomo de este tamaño.

Ben Frank, Director Comercial de Rotor

Además del R550X, Rotor está avanzando hacia la certificación de la tecnología para vuelos de pasajeros. Los helicópteros autónomos de pasajeros tienen el potencial de popularizar el transporte regional rápido y conveniente, que actualmente solo está disponible para VIP. Con la mayor seguridad y eficiencia que ofrece la autonomía, el trayecto de 200 millas entre Nueva York y Boston podría completarse en aproximadamente 90 minutos sin necesidad de transitar por zonas congestionadas.

Sikorsky presenta el prototipo RAIDER X para el programa FARA del Ejército de Estados Unidos

El prototipo RAIDER X fue presentado en la conferencia anual AUSA 2023.

La conferencia anual de la Asociación del Ejército de Estados Unidos (AUSA) 2023 se convirtió en el lugar donde Sikorsky finalmente reveló fotos de su proyecto para el Future Attack Reconnaissance Aircraft (FARA) del Ejército de Estados Unidos.

El programa FARA tiene como objetivo adquirir la próxima generación de helicópteros de reconocimiento, que ocuparán el lugar del retirado OH-58D Kiowa Warrior. El RAIDER X de Sikorsky compite contra el Bell 360 Invictus, tras el abandono del FARA por parte de Boeing, AVX/L3 Harris y Karem.

El RAIDER X es heredero de los resultados obtenidos con los programas S-97 y X2.

Durante el desarrollo, se hizo hincapié en el enfoque de Sistemas Abiertos Modulares (MOSA, por sus siglas en inglés) del Ejército de Estados Unidos para permitir futuras actualizaciones en la arquitectura del sistema.

Sikorsky dice que prototipo del RAIDER X está completo en un 98%, ya que la aeronave espera la finalización del Programa de Turbina de Motor Mejorado GE T901 (ITEP, por sus siglas en inglés). Con el nuevo motor programado para finalizarse a finales de este mes, el primer vuelo está programado para antes del cuarto trimestre de 2024.

Ingenuity, el helicóptero que vuela en Marte, perdió un instrumento, y fue reemplazado por un parche informático

Hace dos años recogíamos en estas páginas el primer vuelo de una aeronave en una atmósfera distinta a la terrestre. Se trataba del helicóptero Ingenuity en la atmósfera marciana, que ya ha realizado más de 50 vuelos en estos dos años en la atmósfera marciana, ¡a pesar de estar pensado para cinco vuelos a realizar en 30 días!

También explicábamos entonces los problemas de volar en otro planeta y otra atmósfera.

Unos eran de diseño, pues todo lo que se conoce de aerodinámica ha sido desarrollado para la gravedad terrestre y para la densidad de la atmósfera terrestre, y en marte tenemos mucha menos gravedad y muchísima menos densidad atmosférica, lo que hace que a pesar del pequeño peso del helicóptero hagan falta unas palas de un diámetro considerable y que giren a mucha velocidad. La gravedad de Marte es entorno a un tercio de la de la Tierra (3.72m/s² frente a los 9.81m/s²), lo que hace que los 1.8kg de masa pesen menos allí que aquí. Sin embargo ¡la densidad de la atmósfera es de un 1% la de nuestro planeta (~0.01kg /m3 frente a los 1.225kg/m3)!.

Los otros tenían que ver con la navegación. Podríamos pensar que este helicóptero se trata de un pequeño drone, y todos sabemos lo sencillo que es volar un drone en la Tierra… pero tenemos que tener en cuenta que en Marte no hay un sistema de navegación por satélite, así que sería como un drone terrestre de vuelo totalmente manual. Pero debido al retraso con el que llegan las órdenes al Planeta Rojo, no se puede volar en manual, y requiere que las cámaras de visión artificial, los sensores de altitud y el piloto automático sean capaz de seguir de forma autónoma el vuelo pre-programado y enviado desde la tierra.

El inclinómetro sólo se utiliza antes de despegar, y básicamente es el que dice al resto de los instrumentos dónde está la horizontal. Una vez establecida la posición horizontal, la aeronave puede volar con seguridad. ¿Habéis volado algún drone y lo habéis calibrado poniéndolo en plano para que sepa exactamente cuál es la horizontal? Pues lo mismo y de forma automática. Gracias a ésto, saben que el altímetro láser está midiendo exactamente a la vertical, por ejemplo.

Pero el año pasado se quedó sin inclininómetro, y nos quedó pendiente contaros cómo lo han hecho para que el helicóptero siga funcionando hasta completar más de cincuenta vuelos.

La solución vino de un ingenioso parche informático.

Los «IMU», los inerciales, vamos, son acelerómetros que se utilizan en la navegación inercial del Ingenuity. Éstos miden aceleraciones, e integrando una aceleración se obtiene una velocidad, por lo que se puede saber a qué velocidad vuela, e integrando una velocidad se obtiene una distancia, y por tanto una posición. Estos inerciales, combinados con el altímetro láser y con las cámaras son los que permiten volar de forma controlada y segura en ausencia de otros medios de navegación.

El parche, simplemente, ha permitido utilizar los datos provenientes de estos inerciales para suplir el inclinómetro. ¿Que no es lo suyo? Cierto. ¿Que no es tan exacto? También. ¿Que funciona y ha permitido prolongar la vida del helicóptero marciano más allá de lo previsto? Es un hecho.

¿Cómo nacieron los helicópteros apagafuegos? [3]

Y con esta tercera entrada llegamos al final de la historia de cómo los helicópteros se convirtieron en medios de extinción de incendios

El desarrollo de los tanques de agua para atacar directamente el fuego

En esta época, el Servicio Forestal de Estados Unidos también estaba considerando la posibilidad de lanzar agua, así como retardante, directamente sobre los incendios forestales desde un helicóptero. Lo consideraban una excelente herramienta para controlar los incendios localizados y los incendios causados por rayos en árboles individuales, y para apoyar a los equipos a lo largo de la línea de fuego.

Fuente

Herb Shields, quien trabajaba en el Centro de Desarrollo de Equipos contra Incendios de Arcadia del Servicio Forestal de Estados Unidos (más tarde el Centro de Tecnología y Desarrollo de San Dimas), desarrolló el primer tanque para helicóptero diseñado para lanzar agua desde un helicóptero. El tanque estaba hecho de un tejido de nylon recubierto de neopreno capaz de transportar hasta 35 galones estadounidenses (132 litros) de agua o retardante. El tanque se sujetaba al gancho de la eslinga debajo del fuselaje del helicóptero entre los patines. Sobre el incendio, el piloto presionaba un botón que liberaba el cuello, haciendo que el agua cayera en cascada sobre las llamas. Desde un camión de bomberos o una bomba portátil, se podía llenar una segunda bolsa que estaría lista para ser adjuntada al helicóptero cuando regresara del incendio. Se llevaron a cabo muchas demostraciones en 1957 mostrando el tanque para helicóptero, que luego fue reemplazado por una versión que podía contener un volumen mayor de agua o retardante.

Uno de los primeros en utilizar los tanques para helicóptero de tela recién diseñados operativamente fue el Departamento de Bomberos del Condado de Los Ángeles, que formó su unidad de helicópteros en 1957, bajo el mando del experimentado piloto de helicópteros Roland Barton. El departamento se formó con la intención original de utilizar sus helicópteros Bell 47G-2 para transportar rápidamente hombres y equipos cerca de donde comenzaban los incendios forestales, pero pronto comenzó a utilizar los tanques para helicóptero para atacar las llamas, solo en 1958 se realizaron más de 77 lanzamientos de helitanker en un solo incendio.

S-58 de Okanagan. fuente

Varios helicópteros Sikorsky H-34/S-58 del Cuerpo de Marines de Estados Unidos fueron probados en 1958 con tanques experimentales debajo del fuselaje para su uso en incendios forestales. Más tarde, en Columbia Británica, Okanagan Helicopters adaptó un Sikorsky S-58 con un tanque interno de 270 galones estadounidenses (1022 litros) y un sistema de compuertas debajo del fuselaje para lanzar sobre incendios forestales durante 1958. Sin embargo, el sistema no era económicamente práctico sin un contrato, y la compañía eventualmente eligió usar un tanque suspendido debajo del helicóptero en su lugar.

Una de las operaciones de helicópteros contra incendios más grandes de 1959 tuvo lugar en el Bosque Nacional de los Ángeles, cuando se lanzaron más de 56000 galones estadounidenses (210000 litros) de agua y retardante mediante una combinación de helicópteros y aviones cisterna. A solo unas millas al este, se utilizaron dos helicópteros Marine H-34/S-58 con tanques de 150 galones estadounidenses (568 litros) para combatir un incendio forestal en el Bosque de San Bernardino en agosto del mismo año.

Tanque ventral en proceso de fabricación. Fuente
tanque ventral en acción. Fuente


La incipiente unidad de aviación del Departamento de Bomberos de ciudad de Los Ángeles fue uno de los primeros en adquirir uno de los nuevos tanques, conocidos como el «Tanque L.A.». El departamento inició sus operaciones con aeronaves de ala rotatoria en 1962 bajo el piloto principal Clarence Ritchie con un helicóptero Bell 47G-3B turboalimentado. Al principio, las puertas accionadas manualmente del Tanque L.A. requerían que el piloto quitara las manos de uno de los controles de vuelo para tirar de una palanca grande y soltar el agua. Esto pronto fue reemplazado por un sistema de liberación eléctrica para abrir y cerrar las puertas con un botón que se pulsaba sin soltar los mandos, un método de operación mucho más seguro.

En 1961, Dominion Helicopters de Ontario utilizó su helicóptero de doble rotor Vertol H-21 para probar un cubo de metal cuadrado que transportaba 258 galones estadounidenses (976 litros) de agua suspendidos debajo del fuselaje. El sistema utilizaba un cable para inclinar el cubo y llenarlo y vaciar el agua, y la fuente de agua tenía que tener al menos seis pies (2 metros) de profundidad para que el cubo se llenara.

Vertol H-21 Fuente

Más al oeste, el piloto de Okanagan Helicopter, Jim Grady, y Henry Stevenson de Stevenson Machinery Ltd. desarrollaron un tambor de 54 galones estadounidenses (204 litros) para transportar agua a incendios forestales utilizando un Hiller 12-E. Les llevó varios años perfeccionar el producto, que se llamaba Monsoon Bucket, en la década de 1960. Transportado por un gancho de carga, el balde se llenaba fácilmente mientras se mantenía en el aire sobre una fuente de agua. Una vez sobre el fuego, la compuerta inferior se activaba mediante un solenoide para liberar el agua. Se vendieron más de 300 kits de conversión de Monsoon Bucket en Canadá, Estados Unidos y Australia.

Monsoon bucket, fuente
Monsoon bucket, fuente
Monsoon bucket, fuente

Al sur de la frontera, el Departamento de Silvicultura de California experimentó con la Bolsa Bowles, un tanque de neopreno que transportaba de 80 a 100 galones estadounidenses (303 a 378 litros). Se sujetaba al marco del tren de aterrizaje y se utilizaba con helicópteros ligeros.

Durante 1963, se realizaron varios intentos para desarrollar un tanque de extinción de incendios para su uso en el Bell 204B de turbina. Comenzando con un tanque interno de 360 galones estadounidenses (1,363 litros) que descargaba agua desde ambos lados de la aeronave, el Servicio Forestal de Estados Unidos y el Departamento de Bomberos del Condado de Los Ángeles trabajaron nuevamente en colaboración para desarrollar un helitank externo fijo de 400 galones estadounidenses (1514 litros) que se perfeccionó alrededor de 1967.

Bell 204 en servicio en Canadá, fuente

Con la introducción de los helicópteros Bell JetRanger, Hughes 500 y Fairchild Hiller FH-1100 en 1967, y su mayor rendimiento en altitud, los helicópteros ahora eran capaces de transportar incluso cargas de agua en baldes más grandes a los incendios. El Boeing Vertol 107-II también demostró su capacidad como aeronave de extinción de incendios en ese momento, utilizando un enorme helibalde de 800 galones estadounidenses (3,028 litros).

Hughes 500, fuente

Una indicación de una nueva era para los tanques se pudo ver al norte de la frontera en 1970. El Departamento de Tierras y Bosques de Ontario y el Servicio Aéreo Provincial de Ontario habían desarrollado un contenedor plegable para el Bell 47G-4. Con un marco de aluminio y un cuerpo de tela, el tanque se podía plegar y retraer automáticamente cuando no se necesitaba. La abertura tenía una anchura de un pie (0.3 metros) por tres pies (0.9 metros) de largo para descargar los 90 galones estadounidenses (340 litros) de agua que transportaba. El diseño contaba con un desarrollo interesante, puesto que no dependía sólo de la gravedad para su llenado, pues podía acelerarse su carga con dos bombas eléctricas.

En la década de 1970, numerosas empresas se dedicaban a fabricar helibaldes de aluminio, fibra de vidrio, poliuretano o tela. Ya fueran plegables o rígidos, variaban en tamaño desde 54 galones estadounidenses (204 litros) hasta más de 110 galones estadounidenses (420 litros). Nombres como Chadwick, Hawkins & Powers, Sims & Griffith eran comunes. El Servicio Forestal de Alberta en Canadá diseñó un tanque de aluminio de 360 galones estadounidenses (1,363 litros) en colaboración con Associated Helicopters para ser utilizado con los Bell 204B y Bell 212.

Los tanques internos y los transportados en eslinga habían recorrido un largo camino en solo dos décadas.

Los helicópteros se consolidan, y llega el Bambi

El aumento de la potencia en los helicópteros permitió aumentar el tamaño de los depósitos transportados. Y así como el excedente de aviones de la Segunda Guerra Mundial supuso la disponibilidad de multitud de aeronaves a bajo precio que fueron ampliamente utilizadas como aviones ejecutivos y apagafuegos, el final de la guerra de Vietnam supuso la llegada masiva de helicópteros de última generación, potentes y a bajo precio, que se incorporaron también a las flotas apagafuegos.

Este aumento de potencia y de disponibilidad de helicópteros hizo que aumentaran los desarrollos para transformar los helicópteros en bombarderos de agua. Durante los años 60, 70 y 80 se desarrollan y patentan distintos sistemas de extinción de incendios. Muchos van dentro del propio helicóptero, y son sistemas presurizados que lanzan un chorro de agua contra el fuego, otros son tanques rígidos transportados dentro de la aeronave con una compuerta para liberar el agua, y otros son baldes de distintos materiales transportados en eslinga bajo el helicóptero. Otros, al estilo del que utiliza el Skorsky Skycrane, están dotados de mangueras y bombas que permiten repostar agua en cualquier punto.

Pero el invento definitivo para convertir el helicóptero en una máquina versátil para transportar brigadas hasta puntos de difícil acceso y a continuación dedicarse a la extinción del incendio, apoyando a la brigada que acababa de desembarcar, fue la llegada del Bambi Bucket o helibalde, nacido en los años 80.

Durante más de medio siglo, los helicópteros y los helibaldes han sido herramientas esenciales para apoyar a las brigadas en la lucha contra incendios forestales. El primer depósito de agua para lucha aérea contra incendios fue un barril montado en un avión y adaptado, con una puerta inferior. En los helicópteros se montaron soluciones similares, con diseños adaptados al interior del helicóptero. O con contenedores para ser transportados en eslinga. Pero estos contenedores de fibra de vidrio, plástico o lona con estructuras metálicas eran demasiado rígidos para caber dentro de la aeronave, eran transportados en camiones hasta los lugares de incendio o transportados externamente por el helicóptero, lo que ralentizaba la aeronave. También eran engorrosos los complicados sistemas de conexión y mecanismos de accionamiento con altas tasas de fallo. Además, el agua lanzada desde los cubos antiguos se dispersaba en forma de rociado, reduciendo así el impacto.

El Bambi Bucket®, inventado por Don Arney en 1982, cambió todo eso. Un contenedor ligero disponible en gran variedad de tamaños que libera agua desde la parte inferior de un helicóptero hacia áreas específicas, el Bambi Bucket fue el primer helibalde completamente plegable. Puede ser guardado dentro del helicóptero, reduciendo la resistencia al aire, hasta su despliegue. La válvula requiere un mínimo de energía eléctrica y puede ser conectada instantáneamente a cualquier helicóptero utilizando un enchufe de corriente estándar. Los Bambi Buckets descargan una columna sólida de agua en lugar de un rociado, lo que resulta en un vertido de agua más preciso y efectivo, menos evaporación durante el descenso y un mayor impacto. Son utilizados en todo el mundo como estándar para la lucha contra incendios en helicópteros y ayudan a contener los incendios forestales que los equipos en tierra pueden controlar. También se utilizaron para enfriar el sitio nuclear de Fukushima en Japón después del tsunami de 2011.

Arney, quien obtuvo su licenciatura en biología de la Universidad Simon Fraser, se inspiró para crear el Bambi Bucket en el diseño de bolsas de elevación utilizadas en el salvamento submarino.

¿El futuro es nocturno y no tripulado?

Los últimos desarrollos del sector se orientan a dos áreas complementarias. Por un lado, y debido el alto riesgo de las misiones, se está buscando volarlas con aeronaves no tripuladas, y ya se han realizado algunos ensayos.

Por otro lado, actualmente este tipo de vuelo está restringido a operaciones diurnas. Sin embargo, ya se han realizado ensayos con grandes helicópteros, como el Chinook, con sistemas de vuelo nocturno. Hablamos de ello hace tiempo en el blog, y no hemos vuelto a tener noticias, esperamos que no sea por el fracaso del sistema, y que sea porque sigue en fase de ensayos y desarrollo.

Fuentes