El ala volante (BWB)de despegue vertical de Aurora supera los ensayos dentro de efecto suelo

Llevamos siguiendo el proyecto Sprint de DARPA y Aurora para diseñar un avion de transporte VTOL desde noviembre del 2023.

El concepto es simple, reune en una sola aeronave soluciones de diseño de los blended wing body (o ala integrada con el fuselaje) con la de los fan in wing (ventiladores en las alas) para lograr una aeronave de aspecto futurista, bajo consumo en crucero y capacidad de operar en pistas no preparadas o dañadas, como muestra la imagen superior que acompaña a la nota de prensa de Aurora.

Según la compañía, el desarrollo llevará a una aeronave con las mismas capacidades que las de transporte actuales, con la ventaja añadida de poder operar desde pistas no preparadas o dañadas y de espacios confinados, al poder despegar en vertical. Sin embargo, a juzgar por las fotos de los ensayos de túnel de viento y de las envergaduta y tamaño de carga declarados en su nota de prensa, parece que el diseño deja poco espacio para carga útil, problema por otra parte conocido de este tipo de aeronaves. No es el único proyecto de ala integrada con el fuselaje (BWB) que se está desarrollando como aeronave de carga en USA, aunque sí el único VTOL. Jet Zero está trabajando en un diseño financiado por la USAF, así como Lockheed Martin y Boeing.

En la última nota de prensa que han publicado nos explican que:

El equipo está diseñando actualmente un demostrador no tripulado con una envergadura de 45 pies (13.7m) y una capacidad de carga de 1,000 libras (454 kg )para el programa SPRINT. El sistema de propulsión incluye motores turbofan y turboeje comerciales que impulsarían el vehículo a un máximo de 450 nudos de velocidad aérea verdadera (KTAS) o 832km/h.

Según la compañía, esta tecnología podría escalarse a aviones de carga de tamaños medio y pesado, creando una futura familia de sistemas. Por ejemplo, Aurora imagina un avión tripulado con una envergadura de 130 pies (40m), cuatro ventiladores de sustentación y una bahía de carga de 40 pies (12m). Según Aurora, el avión podría igualar o superar las cargas, alcances y velocidades típicas de los aviones de transporte militar de ala fija, al tiempo que ofrece la ventaja táctica de un verdadero despegue y aterrizaje vertical.

El programa SPRINT ofrece la oportunidad de proporcionar una capacidad revolucionaria al combatiente. El transporte de alta velocidad, furtivo y que no necesite pistas podría ayudar a mantener a los combatientes seguros y efectivos en entornos disputados, de modo que ningún dominio esté fuera del alcance de nuestras fuerzas armadas de EE. UU. Mike Caimona, presidente y CEO de Aurora Flight Sciences

A principios de este año, el equipo completó el primero de tres ensayos importantes programados para la fase actual del programa SPRINT para demostrar la viabilidad de la tecnología FIW. La prueba de efecto suelo, realizada con un modelo de envergadura recortada de 4.6 pies (1.4m)con tres ventiladores de sustentación, mostró que los efectos desestabilizantes de interacción aire del ventilador-suelo-parte inferior del fuselaje eran insignificantes y que el tren de aterrizaje está configurado a la altura adecuada para minimizar la formación de momentos de cabeceo adversos durante las operaciones en tierra.

Las pruebas en túnel de viento planificadas para finales de 2024 y principios de 2025 incluyen una prueba de estabilidad y control utilizando un modelo de avión de envergadura completa de 9 pies (3m)y una prueba de ventilador de sustentación de semi-envergadura de 5¼ pies (1.6m) para modelar efectos aerodinámicos.

La fase actual del programa continúa hasta mayo de 2025 con la revisión preliminar del diseño programada para abril de 2025. Las pruebas de vuelo para el programa están planificadas para 2027.

Nota de prensa

Aurora publica un nuevo vídeo de su «ekranoplano» Liberty Lifter

Liberty Lifter es un proyecto de DARPA que llevamos siguiendo desde hace algo más de dos años. Se trata de un vehículo de efecto suelo, (wing in ground vehicle o WIG para los estadounidenses), aunque el nombre que más solemos asociar a este tipo de aeronaves es el que le dieron los rusos: ekranoplano.

Dos equipos, General Atomics que trabajaba con Maritime Applied Physics Corporation y Aurora Flight Sciences que trabaja con Gibbs & Cox y ReconCraft, compitieron al comienzo con sendos diseños para el prototipo a gran escala del Liberty Lifter, hidroavión y vehículo de efecto suelo –ekranoplano– de DARPA.

Desde mayo de 2024 Aurora y sus socios siguen en solitario en el proyecto. 

Además, debe concebirse como aeronave de bajo coste para romper con la tradición de los programas de adquisición de aeronaves, incluso utilizando materiales «exóticos» en aviación, es decir, poco utilizados tradicionalmente en aviación, pero de más bajo coste. (¿Acero inoxidable, tal vez?)

La propuesta de Aurora, es una configuración bastante convencional, con un fuselaje y ala alta, y flotadores de punta de plano para estabilizar el avión en el agua, y bebe de la experiencia de Boeing en el desarrollo de su Pelikan.

Boeing Pelikan

El programa centra el foco en tres aspectos:

  • Operaciones marítimas ampliadas: Se hará hincapié en el funcionamiento en estados de mar turbulentos mediante la creación de capacidades STOL para reducir la carga de impacto de las olas durante el despegue/aterrizaje y nuevas soluciones de diseño para absorber las fuerzas de las olas. Además, el proyecto abordará los riesgos de colisión del vehículo durante el funcionamiento a alta velocidad en entornos congestionados. Por último, el objetivo es que el vehículo funcione en el mar durante semanas, sin actividades de mantenimiento en tierra.
  • Fácil industrialización a gran escala y bajo coste: La construcción dará prioridad a los diseños sencillos y baratos de fabricar frente a los conceptos complejos y de bajo peso. Los materiales deben ser más asequibles que los de la fabricación tradicional de aviones y estar disponibles para ser comprados en grandes cantidades.
  • Controles complejos de vuelo y en el mar: Se desarrollarán sensores y esquemas de control avanzados para evitar las grandes olas y gestionar las interacciones aerodinámicas e hidrodinámicas durante el despegue y el aterrizaje.

Los objetivos incluyen el despegue y el aterrizaje en el estado del mar 4, la operación sostenida en el agua hasta el estado del mar 5 y operar como ekranoplano o vehículo de efecto suelo y como avión, con un techo de 10000ft sobre el mar (ASL).

Inicialmente, DARPA imaginó que Liberty Lifter tendría aproximadamente el mismo tamaño y capacidad que un C-17 Globemaster, pero desde entonces ha reducido el tamaño del demostrador hasta el de un C-130 Hércules. Sin embargo, los documentos presupuestarios de DARPA para el año fiscal 2025 muestran que un futuro Liberty Lifter más grande podría construirse escalando el tamaño del demostrador tecnológico hasta el de un C-17.

El nuevo video muestra el Liberty Lifter en acción, aterrizando en el mar en una ubicación remota de una isla y descargando vehículos anfibios blindados pesados antes de despegar de nuevo. Un punto muy interesante es que muestra cómo para mantener el crucero en vuelo dentro del efecto suelo sólo necesita la mitad de sus motores en funcionamiento, llevando los otros 4 parados y con su hélice abanderada, aunque sí usa los ocho durante su fase de despegue, hasta que se libera de la resistencia del agua.

Según Aurora, su trabajo en la construcción del avión X, con una envergadura de 65 m (213 pies) se encuentra en la Fase 1B, que incluye actividades de prueba que culminan en una revisión preliminar del diseño. Además, se han realizado pruebas en centros hidrodinámicos para evaluar el diseño en el estado de mar requerido y pruebas en túneles de viento para el rendimiento de la hélice. La Fase 2 implicará una revisión crítica del diseño y la Fase 3 en 2026 implicará la construcción del avión X. El avión final, programado para volar en 2028, tendrá una capacidad de carga de 81,000 kg (180,000 libras).

Como hemos comentado en más de una ocasión en el podcast con nuestro amigo Carlos, creemos que el teatro de operaciones estadounidense del futuro va a ser marítimo, concretamente en la zona de Taiwan, así que necesita vehículos que pueda desplazarse a gran velocidad hasta la isla. Y esta aeronave, pensada para no volar más que rascando el agua, podría ser una buena solución: gran capacidad de carga a alta velocidad. Y además, DARPA solicitaba que fuera con materiales no habituales en aeronáutica, así que imaginamos que se estará pensando en acero inoxidable, más resistente a ambientes marítimos que el aluminio.

Liberty Lifter llena un vacío crítico entre las capacidades actuales de transporte aéreo y marítimo. El desarrollo en este espacio hará avanzar las operaciones estratégicas en el mar, y estamos orgullosos de trabajar con DARPA, Boeing y nuestros socios para impulsar esta tecnología. Mike Caimona, presidente y CEO de Aurora Flight Sciences

Sikorsky ensaya un «tail sitter» como aeronave VTOL para DARPA

Una aeronave VTOL es aquella que despega y aterriza en vertical. Y hay muchas formas de lograrlo, bien con alas rotatorias, como los helicópteros, bien con rotores basculantes como los convertiplanos… Y, como todo diseño, cada cual tiene sus ventajas y desventajas.

Los tail-sitter son aquellas aeronaves VTOL que despegan desde una posición morro arriba, sentadas en su cola. Son, posiblemente de los diseños más antiguos que hay, por su simplicidad.

Ya sabemos que los helicópteros, siendo una excelente máquina VTOL, tiene como inconvenientes su elevado consumo y su limitada velocidad de crucero.

Los convertiplanos tienen como desventaja la complejidad de los mecanismos para bascular el rotor, los problemas estructurales que introduce la precesión giroscópica del mismo, y el coste que tienen, amén de la resistencia aerodinámica y los efectos que tiene el que el ala esté en perpendicular del flujo del aire de los rotores durante el vuelo «como helicóptero», salvo que el ala entera pivote, y no solo los rotores, lo que trae otro montón de problemas.

Los tail-sitter carecen de todos estos problemas. Son aeronaves «convencionales», con un par de rotores más grandes, lo suficiente como para dar un empuje igual al peso y levantar toda la aeronave y su carga de pago, pero no tiene ningún tipo de mecanismo adicional que haga pivotar los rotores. Es toda la aeronave la que rota sobre su eje de cabeceo hasta alcanzar la posiciòn horizontal de vuelo. De este modo puede conseguir mayores velocidades que los helicópteros, con mucho menor consumo, sin los problemas de los rotores basculantes que ya hemos mencionado.

Y si son tan buena solución de diseño, ¿cómo es que no tenemos los buques de nuestras armadas llenos de ellos? Porque hasta ahora se han probado tripulados. Y el mayor problema de estas aeronaves es su operación tripulada. ¿Os imagináis al piloto aterrizando con la mano en el respaldo del asiento del copiloto y mirando hacia atrás por encima del hombro? De hecho hay muchos proyectos históricos que fracasaron, entre otros motivos por este, como por ejemplo el Convair Pogo.

Pero ahora, que es la era de las aeronaves no tripuladas, puede ser su momento. Tan solo necesitan un sistema de control de ciclo cerrado y caracterizar adecuadamente las leyes que gobiernan su vuelo. Y eso es lo que va a hacer Sikorsky con esta aeronave para DARPA.

Os dejamos a continuación la nota de prensa.

Nota de Prensa:

Sikorsky, una compañía de Lockheed Martin (NYSE: LMT), está llevando a cabo pruebas de vuelo para perfeccionar las leyes de control y la aerodinámica de un novedoso sistema aéreo no tripulado de despegue y aterrizaje vertical (VTOL / UAS). Las pruebas de vuelo tienen como objetivo demostrar la eficiencia y escalabilidad de una configuración de doble rotor y ‘ala soplada por rotor’ que se coloca en posición vertical para despegar y aterrizar como un helicóptero, y transita fácilmente a un vuelo horizontal hacia adelante para misiones de larga duración, como inteligencia, vigilancia, reconocimiento y designación de objetivos.

Las pruebas de vuelo en curso respaldan la iniciativa Ancillary de la Agencia de Proyectos de Investigación Avanzada en Defensa (DARPA), que busca desarrollar un UAS VTOL X-Plane de Clase 3 que pueda operar en la mayoría de las condiciones climáticas desde cubiertas de barcos y superficies no preparadas sin infraestructura. Sikorsky es uno de varios competidores seleccionados para avanzar sus diseños conceptuales de UAS a la siguiente fase de desarrollo.

El término ‘ala soplada por rotor’ se refiere al flujo constante de aire procedente de las hhélices y que fluye a través del ala. Sikorsky eligió el diseño para reducir la resistencia en el ala en modo de hover y al transicionar al vuelo hacia adelante, y para aumentar la eficiencia de crucero y la resistencia.

El diseño es solo una de las muchas formas en que Sikorsky está avanzando en tecnologías e innovaciones de Seguridad del Siglo XXI®, dijo Igor Cherepinsky, director del grupo de prototipos rápidos Sikorsky Innovations.

«Las pruebas de vuelo están en curso para verificar que nuestro UAS de ala soplada por rotor de posición vertical pueda despegar y aterrizar verticalmente con alta estabilidad, y volar eficientemente en ala», dijo Cherepinsky. «Los habilitadores clave para la maniobrabilidad de vuelo y la escalabilidad del vehículo en el futuro son nuestro sistema de control de vuelo de autonomía MATRIX, y un sistema de rotor articulado similar a los de los helicópteros tradicionales».

Para las pruebas de vuelo que se están llevando a cabo actualmente, Sikorsky está volando un vehículo de prueba alimentado por una batería. Si es seleccionado para producir un vehículo aéreo para una futura fase ANCILLARY, Sikorsky planea construir una versión híbrida-eléctrica de 300 libras que incluya una carga útil ISR de 60 libras.

Sikorsky Innovations se formó en 2010 para superar los desafíos tecnológicos de la velocidad, autonomía e inteligencia de las alas giratorias, Aprende más sobre los logros del equipo de ingeniería en velocidad e inteligencia, y su enfoque actual en la electrificación y UAS VTOL para apoyar las misiones de Seguridad del Siglo XXI®.

«Mandamás» de la USAF vuela en un F-16 pilotado por IA

Los más habituales ya conocéis el X-62 VISTA, también conocido como NF-16. Para los más despistados, les recordaremos que es un avión experimental estadounidense con el que se están llevando a cabo ensayos incluso de combate humano-IA, ¡volando el F-16 una IA! Y que llevamos siguiendo desde hace un tiempo.

Y, en un paso más para demostrar la fiabilidad del programa, han subido al avión pilotado por la inteligencia artificial a Frank Kendall, secretario de la USAF.

Nota de prensa

El Secretario de la Fuerza Aérea, FRANK KENDALL, voló en el asiento delantero del X-62A VISTA en la Base de la Fuerza Aérea Edwards, el 2 de mayo, para experimentar de primera mano este avión único, que incorpora aprendizaje automático y software altamente
especializado para probar vuelos autónomos y otras capacidades de vanguardia.

La característica más potente del X-62A, llamado VISTA (Aeronave de prueba de simulación en vuelo variable), es su nueva herramienta para desarrollar y probar capacidades de vuelo en tiempo real mediante el aprendizaje automático y la integración de agentes en vivo. Esta tecnología se probó con éxito a través de una colaboración con el programa Air Combat Evolution de DEFENSE ADVANCED RESEARCH PROJECT AGENCY. El equipo fue finalista del Trofeo Robert J. Collier 2023 como reconocimiento a sus grandes esfuerzos.

“El potencial para el combate autónomo aire-aire ha sido imaginable
durante décadas, pero la realidad había sido un sueño lejano, hasta ahora. En 2023, el X-62A rompió una de las barreras más importantes de la aviación de combate. Este es un momento de transformación, todo posible gracias a los importantes logros del equipo ACE”, dijo Kendall.

La división de investigación de la ESCUELA DE PILOTOS DE PRUEBAS DE LA FUERZA AÉREA de EE. UU. lidera las responsabilidades generales de gestión del programa para el X-62A. El objetivo principal de la división es liderar investigaciones que aceleren las capacidades multidominio del combatiente y al mismo tiempo acepten desafíos.
probar rápidamente nuevas tecnologías.

Hace unos cuatro años, el equipo se propuso mejorar las ya únicas capacidades de entrenamiento de prueba de VISTA, que históricamente le permitieron simular las características de vuelo de otro avión, pero no se detuvieron ahí. Crearon una capacidad completamente nueva, una que aún no existía en el Departamento de Defensa. Vieron la posibilidad de transformar VISTA en un vehículo para incorporar y probar la la inteligencia artificial. Las capacidades iniciales de VISTA fueron reinventadas, reelaboradas y ampliadas fundamentalmente, culminando en una actualización que se completó en 2022 e incluyó tres nuevos paquetes de software altamente especializados con significativamente más potencia informática para que todo funcione.

“La IA realmente toma la tecnología más capaz que tienes, la combina y la utiliza en problemas que antes tenían que resolverse a través de la toma de decisiones humanas. Es una automatización de esas decisiones y es muy específica”, dijo Kendall.

Durante el vuelo de Kendall, el X-62A realizó una variedad de maniobras tácticas reales que respondieron en tiempo real a una amenaza simulada. Completó una serie de puntos de prueba, que formaban parte de un combate aéreo dentro de una operación que validó los modelos y probó su rendimiento. Sentado en el asiento delantero, los controles del X-62A permanecieron sin tocar tanto por Kendall como por el piloto de seguridad en el asiento trasero durante todo el vuelo de prueba.

Aurora progresa con los ensayos para el ekranoplano de DARPA

Llevamos un tiempo siguiendo las andaduras de DARPA y su Liberty, algo así como la reedición futurista de los Liberty Ships de la Segunda Guerra Mundial, pero en vehículo de efecto suelo, o ekranoplano.

Como hemos comentado en el podcast con nuestro amigo Carlos en más de una ocasión, creemos que el teatro de operaciones estadounidense del futuro va a ser marítimo, concretamente en la zona de Taiwan, así que necesita vehículos que pueda desplazarse a gran velocidad hasta la isla. Y esta aeronave, pensada para no volar más que rascando el agua, podría ser una buena solución: gran capacidad de carga a alta velocidad. Y además, DARPA solicitaba que fuera con materiales no habituales en aeronáutica, así que imaginamos que se estará pensando en acero inoxidable, más resistente a ambientes marítimos que el aluminio.

Y Aurora acaba de anunciar en una nota de prensa que el proyecto marcha adecuadamente, realizando los ensayos correspondientes al contrato de la Fase 1B. Y, siendo Aurora una compañía de Boeing, suponemos que se beneficiarán de todos los conocimientos adquiridos por esta última durante el desarrollo de su Pelican.

El programa centra el foco en tres aspectos:

  • Operaciones marítimas ampliadas: Se hará hincapié en el funcionamiento en estados de mar turbulentos mediante la creación de capacidades STOL para reducir la carga de impacto de las olas durante el despegue/aterrizaje y nuevas soluciones de diseño para absorber las fuerzas de las olas. Además, el proyecto abordará los riesgos de colisión del vehículo durante el funcionamiento a alta velocidad en entornos congestionados. Por último, el objetivo es que el vehículo funcione en el mar durante semanas, sin actividades de mantenimiento en tierra.
  • Fácil industrialización a gran escala y bajo coste: La construcción dará prioridad a los diseños sencillos y baratos de fabricar frente a los conceptos complejos y de bajo peso. Los materiales deben ser más asequibles que los de la fabricación tradicional de aviones y estar disponibles para ser comprados en grandes cantidades.
  • Controles complejos de vuelo y en el mar: Se desarrollarán sensores y esquemas de control avanzados para evitar las grandes olas y gestionar las interacciones aerodinámicas e hidrodinámicas durante el despegue y el aterrizaje.

La Fase 1B es la que se conoce normalmente como diseño preliminar, que termina con una PDR o revisión del diseño preliminar. Durante esta fase se define la forma general de la aeronave, y se calcula su estructura para poder definirla a grandes rasgos, dejando para la fase siguiente los diseños más detallados, como por ejemplo las uniones más específicas.

Además, durante esta fase se realizan ensayos para reducir los riesgos, así que se ensayan formas de fabricar, de ensamblar, materiales… y se realizan ensayos aerodinámicos e hidrodinámicos.

Seguiremos el proyecto…

Nota de Prensa:

Los ensayos reducem el riesgo y mejora la calidad a medida que el equipo diseña su revolucionario concepto de hidroavión para DARPA.

Aurora Flight Sciences, una compañía de Boeing, está avanzando en la Fase 1B del programa Liberty Lifter, el programa de la Agencia de Proyectos de Investigación Avanzada de Defensa (DARPA) que tiene como objetivo diseñar, construir, poner a flote y volar un avión experimental asequible que demuestre una capacidad revolucionaria de transporte pesado desde el mar. Para lograr esta capacidad revolucionaria, el vehículo operará de manera eficiente en efecto suelo en condiciones de mar agitado y demostrará asequibilidad utilizando fabricación de bajo costo y características de diseño únicas.

El objetivo final de la Fase 1B es el diseño preliminar, y un enfoque importante durante la fase es la prueba para reducir el riesgo. ReconCraft, un astillero con sede en Oregón, es un miembro del equipo de Aurora que ofrece experiencia en métodos de fabricación marítima. La compañía construirá especímenes de prueba de estructuras a escala real, incluyendo una parte del fuselaje. La construcción y prueba de las estructuras reduce el riesgo y garantiza la calidad, ya que el equipo trabaja con materiales novedosos y requisitos únicos. El equipo de Aurora también probó un modelo a escala del casco en el tanque de remolque de Virginia Tech, que ofrece una capacidad única para estudiar el impacto de la embarcación durante el aterrizaje. Las próximas pruebas incluyen volar sensores y software para la detección y predicción de olas, que alimenta el sistema de control avanzado del avión X para volar de manera segura en efecto suelo en condiciones de mar agitado.

En su última versión, el diseño de Aurora para el Liberty Lifter cambió de una cola en forma de T a una cola en forma de π, que es más eficiente estructuralmente para acomodar una puerta de carga posterior. Además, los flotadores fueron reubicados a las puntas de las alas del vehículo, lo que crea un mejor equilibrio entre la asequibilidad y el rendimiento del vehículo en efecto suelo.

Junto con ReconCraft, el equipo liderado por Aurora incluye a la destacada empresa de arquitectura naval e ingeniería marina Gibbs & Cox, una compañía de Leidos. La empresa desempeña un papel crítico ya que el avión X, en muchos aspectos, es un barco que vuela. Varios asesores e ingenieros de la empresa matriz de Aurora, Boeing, también aportan su experiencia al equipo. El programa se beneficia de investigaciones y desarrollos previos de Boeing, que tiene una larga historia en hidroaviones y aviones anfibios.

Boeing Pelikan

«Las innovaciones a menudo ocurren en las intersecciones. Aquí, es la intersección de nuestros equipos marítimos y aeroespaciales», dijo Dan Campbell, gerente del programa de Aurora. «Por ejemplo, la intersección de la fabricación marítima con el diseño estructural aeroespacial, o la intersección de la predicción de olas marítimas con los controles aeroespaciales».

La Fase 1B concluye con una revisión preliminar del diseño, programada tentativamente para enero de 2025. Si el programa avanza, las pruebas de vuelo se llevarían a cabo en 2028.