El bombardero XB-70 y las versiones raras que se planearon

XB-70

Introducción

El Valkirie es posiblemente uno de los proyectos cancelados más conocidos por todos. Un bombardero que podía volar a Mach 3, con geometría de punta de ala variable… En una época en la que contar con los medios informáticos de diseño y simulación de hoy en día hubieran sido poco menos que una quimera. Y, sin embargo, volaba. Eran los años cincuenta, y en ingeniería todo o casi todo era posible, ¡y se invertía dinero en esos desarrollos por locos que parecieran!

El XB-70

Incluso antes del primer vuelo del B-58, la Fuerza Aérea estaba considerandoun sustituto que fuera más grande, más rápido, con más carga de bombas, y mejor. Emitiendo una solicitud en 1954 que surgió formalmente en 1955 como «Sistema de Armas 110 (WS-110)», que especificaba un bombardero de gran altitud y largo radio que transportaría una carga de guerra pesada y volaría a Mach 3.

Boeing y North American presentaron propuestas, pero los conceptos no eran exactamente lo que quería la Fuerza Aérea. Estos aviones habrían tenido un peso máximo al despegue de más de 450 toneladas (un millón de libras) y hubieran sido demasiado grandes para caber en los hangares existentes, dimensionados para el B-52, y hubiera complicado la logística, por su tamaño, en otras instalaciones. Las propuestas fueron rechazadas.

Ambas compañías volvieron a la mesa de dibujo y diseñaron un bombardero con una carga de bélica de 18,2 toneladas (20 000 libras) que podía volar a Mach 3 a una altitud de más de 21 kilómetros (70 000 pies), y aun así podría utilizar todas las instalaciones existentes. North American ganó en diciembre de 1957.

El diseño de la compañía, denominado B-70, tenía una configuración canard, con un fuselaje esbelto y un gran ala delta, cuyas puntas eran avatibles. Esta característica le permitía variar su geometría en vuelo, optimizando el ala para las fases del vuelo subsónicas y supersónicas.

El bombardero iba a ser propulsado por seis turborreactores General Electric J93, cada uno con un empuje de poscombustión de más de 127,5 kN (13.000 kgp / 30.000 lbf).

El tren de aterrizaje del triciclo presentaba conjuntos de tren delantero de dos ruedas y tren principal de cuatro ruedas. El avión se construiría principalmente ¡en acero inoxidable!, y se usaría titanio en secciones específicas críticas para el calor.

Pero, igual que los misiles aire-aire hicieron creer a algunos gerifaltes que no tenía sentido equipar con cañones a los cazas por ser un armamento obsoleto, el nacimiento de los misiles balísticos intercontinentales, con capacidad de portar ojivas nucleares hizo que el desarrollo de este tipo de bombarderos se viera frenado primero, cancelado después.

Eisenhower estaba muy molesto por insistencia de los generales para presionar a favor del B-70 en el Congreso. En diciembre de 1959, el programa B-70 se redujo a un solo prototipo y hasta una docena de bombarderos.

Con el cambio de presidencia las cosas no mejoraron. John F. Kennedy no estaba más entusiasmado con el B-70 que Eisenhower, y el 1 de marzo de 1961 anunció que el programa se reduciría a dos prototipos XB-70 y un avión de pre-producción YB-70.

El primer XB-70 hizo su debut en las instalaciones de North American en Palmdale, California, el 11 de mayo de 1964. Fue bautizado como Valkyrie y el prototipo inicial se designó como Air Vehicle 1 (AV / 1) , y recibió el número de serie 20001.

El Valkirie realizó su primer vuelo el 21 de septiembre de 1964. Fue ampliando su envolvente de vuelo poco a poco, superando Mach 1 por primera vez el 12 de octubre de 1964. Ya en 1965 realizó vuelos a Mach 1,4 y llegaría a superar Mach 2.

En su duodécimo vuelo, el 7 de mayo de 1965, mientras volaba a Mach 2,58, se rompió un trozo del ala y se apagaron cuatro de los seis motores. El piloto logró regresar exitosamente a pista volando con sólo dos motores. Una vez revisado y reparado, se reemplazaron los seis motores.

Para el verano de 1965 se presentaba el el AV/2, que despegaría por primera vez el 17 de julio de 1965. Las pruebas continuaron con ambos XB-70. El 14 de octubre de 1965, el AV/1 alcanzó Mach 3 a 21 kilómetros de altitud, pero sufrió daños en una de las puntas de ala. El AV / 1 nunca volvió superar Mach 2.5.

Se creyó que el AV / 2 tampoco tendría la resistencia estructural necesaria para superar Mach 3. Se planificaron vuelo de ensayo para incrementar la velocidad poco a poco. Se pensó que la mejor forma de evitar los sobre esfuerzos en el ala sería llegar a Mach 3 de forma incremental, primero sosteniendo Mach 2,8 hasta que la estructura alcanzaba su equilibrio térmico y estructural y cesaban los efectos transitorios, posteriormente se aceleraría a Mach 2,9, y se sostendría esta velocidad durante un tiempo, por los mismos motivos, para al final alcanzar Mach 3.

Tras la barrera del sonido hay que superar la barrera térmica. Las propiedades de los materiales cambian a peor y se degradan, las estructuras se deforman, y la temperatura se vuelve una barrera mucho más insalvable para superar Mach 3 que la potencia de los motores o la aerodinámica. El morro y otras partes del avión más expuestas al «choque» con el aire alcanzaban los 330 grados Celsius (625 grados Fahrenheit). El resto del avión se quedaba en sólo 232 grados Celsius. (450 grados Fahrenheit).

Para refrigerar el revestimiento se utilizaba un ingenioso sistema que involucraba al propio combustible: el combustible circulaba por las zonas críticas a refrigerar, actuando como el agua de un radiador, y llegaba a los motores convenientemente precalentado, lo que también era favorable para el motor. El espacio vacío que dejaba el combustible al irse consumiendo era rellenado con un gas inerte, nitrógeno.

El AV / 2 llegí finalmente a volar a Mach 3. Sus vuelos sirvieron también para definir las limitaciones que se impondrían posteriormente a cualquier vuelo supersónico: el ruido generado por el estampido sónico era inaceptable para la población. ¡Por eso el Concorde sólo volaba en supersónico sobre el océano!

En el vuelo número 37, en marzo de 1966, el sistema hidráulico del AV/1 falló, obligando al piloto a hacer un aterrizaje forzoso al no desplegarse de forma adecuada el tren de aterrizaje. El avión tardó 4.8km en detenerse, tras tocar el suelo.

Poco después el AV/2 sufrió un fallo similar, el 30 de abril de 1966. El tren de morro no se desplegó. El piloto realizó dos tomas y despegues, intentando que el tren de morro terminara de desplegarse por su propia inercia. Finalmente, tras varias horas de vuelo buscando soluciones, los ingenieros, en tierra, encontraron la solución y explicaron a la tripulación cómo conectar un sistema eléctrico de respaldo, puenteando un fusible con un clip, y el tren de morro se desplegó.

El 19 de mayo de 1966, AV/2 voló a Mach 3 durante 33 minutos sostenidos. La fase 1 de los ensayos se había completado. Seguirían con la segunda fase, con la NASA cada vez más involucrada en los vuelos de ensayo, durante los cuales se recogían invaluables datos.

El 8 de junio de 1966 se produciría la catástrofe, que todos conocemos, durante una sesión de fotos con otros cuatro aviones que también usaban motores General Electric.

Uno de los aviones era un F-104 Starfighter, pilotado por el conocido piloto de pruebas Joe Walker. Volaba como punto derecho del XB-70 cuando terminó la sesión de fotos. El Starfighter chocó contra el Valkirie. El F-104, que explotó matando al piloto, había dañado el XB-70. El XB-70, al comienzo, siguió volando con normalidad. Luego, la aeronave realizó dos alabeos lentos y comenzó a girar. White logró eyectarse, pero Cross cayó con el avión, que se estrelló contra el suelo unos kilómetros al norte de Barstow, California.

Sus versiones más extrañas

Por supuesto, un avión capaz de volar a esas velocidades, casi in-interceptable, y a esa altitud de vuelo, podía ocupar muchos otros nichos muy interesantes. Si se llegó a pensar en el B747 como transporte de tanques, ¿cómo no se iba a querer sacar provecho de tal maravilla tecnológica diseñando otras versiones que pudieran cubrir otras demandas distintas a las de bombardeo?

Una de las modificaciones potenciales eran para dar soporte al propio bombardero. En caso de ser desplegado a una base aérea no habitual, podría llevar un contenedor externo cargado de todo lo necesario para realizar las labores de mantenimiento mientras se encontraba en la base de dispersión o, en general, en la base no habitual.

Por supuesto, era una plataforma idónea para la experimentación de otros vehículos. ¡Qué mejor plataforma de lanzamiento de vehículos hipersónicos de investigación que un avión que ya de por sí solo podía volar a tres veces la velocidad del sonido! Algunos tipos de vehículos, como el vehículo de prueba suborbital defuselaje sustentador Martin SV-5, solo requerían carenados delanteros y traseros en lugar de un recinto completo.

Por ese mismo motivo recibió mucha atención de empresas públicas y privadas, de civiles y militares. Podía ser una buena plataforma para lanzar desde 21000 metros satélites, vehículos orbitales o suborbitales… y reemplazar los costosos cohetes y sistemas de lanzamiento balísticos por un avión reutilizable.

El relativamente pequeño X-20 Dyna-Soar podría transportarse bajo el B-70, con solo añadir un carenado ventral. Este concepto era lo suficientemente atractivo como para hacer que las pruebas en el túnel de viento fueran un requisito antes de que pudiera continuar. Con la cancelación del programa Dyna-Soar, la USAF detuvo todas las investigaciones.

Lockheed construyó el RM-81 Agena originalmente para el programa de satélites de reconocimiento WS-117L. Después de que WS-117L se dividiera en tres programas, el Agena se convirtió en un acelerador de etapa superior y portador de satélite. Lanzar el Agena desde un propulsor recuperable como un B-70 ahorraría un costo significativo en comparación con los grandes cohetes desechables de la época.

Incluso se pensó en el Valkirie como lanzador reutilizable para el Programa Gemini.

Recordáis que hubo un tiempo durante la guerra fría durante el cual siempre había tripulaciones de B-52 armados volando, por si llegaba el caso de tener que utilizar la fuerza, y que además actuaban como medida disuasoria. Pues se pensó que el Valkirie hubiera podido ser una medida mucho más disuasoria todavía, si hubiera volado en misiones similares a estas si hubiera volado armado con un silo porta misiles balísticos intercontinentales LGM-30 Minuteman II.

El muy exitoso programa X-15 hizo que se propusiera una variante con ala delta, capaz de volar aún más rápido y alto que el propio X-15. Para maximizar el potencial de este nuevo vehículo, ¿qué mejor que lanzarlo ya a Mach 3 desde el Valkirie?

El usarlo como misilero no caería en el olvido fácilmente y se propondrían distintas variaciones de la misma misión. Sobre estas líneas el concepto de porta misiles de propósito general, proponía usar una plataforma misilística común con diferentes ojivas adaptadas para diferentes objetivos similares a las armas inteligentes de hoy. Con no menos de 14 de estas armas, el B-70 estaba listo para cualquier amenaza. Debajo, un B-70 equipado con misiles GAM-87 Skybolt.

Y, siendo un avión invulnerable, ¿cómo no hacer una versión de reconocimiento? Las modificaciones necesarias para convertir el YB-70A en el RSB-70A, de reconocimiento/ataque, incluían el cambio de aviónica, la adición de cámaras de reconocimiento y la instalación de un bastidor rotativo, tipo revólver, como el que montarían bombarderos diseñados tiempo después.

El XB-70 era rápido, muy rápido. Pero eso no significaba que no se quisiera volar aún más rápido. Y para ello era necesario poder investigar con estatorreactores, e intentar llegar a tener vehículos o misiles hipersónicos, ahora tan en boga.

Y como olvidarnos de todas las conversiones que hemos visto de aviones militares a aviones ejecutivos o de transporte. El Valkirie no podía ser menos. Modificar el XB-70, un avión que ya estaba en vuelo y se conocían sus fortalezas y deficiencias, era la manera más rápida de tener un avión de pasajeros supersónico, modificando su fuselaje para incluir ventanas.

La configuración normal de asientos podría acomodar a 80 pasajeros, mientras que la de alta densidad admitía hasta 107.

Además el Valkirie podría configurarse como avión de evacuación médica de muy alta velocidad, pudiendo transportar hasta 48 heridos más el personal sanitario.

Las modificaciones incluían el fuselaje superior, para hacer hueco a los pasajeros y añadir ventanas, un área para transportar el equipaje, una puerta de carga más baja y la reducción de la cantidad de combustible que se podía transportar.

Las versiones de alta densidad y de evacuación médica tenían una clara vocación militar.

Incluso se propuso una versión puramente de carga. Se intentó demonstrar que la capacidad de carga de su transporte supersónico podía ser igual o mejor que la de transportes más grandes. Tal vez no pudiera llevar tanta carga, pero sí podía hacerlo más rápido, y cubrir más veces el mismo trayecto en el mismo tiempo.

Se plantearon distintas soluciones para cargar el avión, un morro basculante como el del C-5, puertas de carga en la panza, o el uso de contenedores cargados bajo el fuselaje.

Repostar aviones supersónicos tan rápidos como el Valkiria hubiera sido más sencillo si un avión igual actuaba de cisterna.

Para solucionar los problemas de su manejo a baja velocidad, para acortar la carrera de despegue y aterrizaje y poder utilizar pistas convencionales, se pensó en acoplar un ala Rogallo retráctil. También se pensó instalar en el F-100.

Y, por supuesto, habiendo en desarrollo aviones de pasajeros supersónicos, cazas, bombarderos así como queriendo desarrollar vehículos hipersónicos… había en desarrollo nuevos motores. Y había que ensayarlos en algún avión… la seguridad que aportaba la condición de multimotor y su alta velocidad, hacían al Valkirie ideal para este cometido…

Fuentes

[Vídeo] Avión de los hermanos Wright en vuelo

Un día como hoy de 1903 volaba por primera vez en la playa de Kittyhawk el Flyer I, el primer avión práctico de la historia (primera aeronave más pesada que el aire propulsada por motor y capaz de hacer maniobras de forma controlada).

Y para conmemorarlo, traemos una de las primeras películas que recoge este avión en vuelo. Se trata de una película que recoge grabaciones de 1908 y 1909, mientras hacían ensayos para convencer al ejército estadounidense de la utilidad de su nueva máquina.

Eso sí, la película ha sido coloreada.

Añadimos a la anterior, una película de 1908 realizada por Edison

Fiat G-59, el «buchón» italiano

El Fiat G55 Centauro, junto con los Macchi 205 Veltro y Reggiane Re 2005 Sagittario, forma parte de la triada de los mejores cazas italianos de la Segunda Guerra Mundial. Y los tres comparten tres características: llegaron demasiado tarde, llegaron pocos, y montaban un motor alemán Daimler Benz de 12 cilindros en V.

Tras la Segunda Guerra Mundial, Italia necesitaba reconstruir su fuerza aérea, y Fiat intentaba reconstruir su industria. Y para ello pensó en su último caza a pistón, el G55 Centauro. Podía ser una buena base.

Pero si durante la guerra italia tuvo problemas de motorización, no iba a ser menos tras ella. Por ello, como en el caso español de los Buchones, se recurirría al Rolls Royce Merlin para dotar a una célula revisada y mejorada de un Centauro de un motor de 1600HP, eso sí, con el fuselaje trasero recortado para acomodar una cúpula de burbuja, al estilo del Mustang D.

Se desarrollaron versiones monoplaza y biplaza, y sirvieron como entrenadores avanzados.

Fue uno de los últimos aviones de FIAT de alto rendimiento equipado con un motor de pistón y también puede considerarse como un símbolo del renacimiento de la posguerra de la industria aeronáutica italiana.

Fue diseñado por el famoso ingeniero aeronáuticos italiano Giuseppe Gabrielli. Más de 180 unidades fueron producidas por FIAT a principios de la década de 1950, utilizadas principalmente en la Fuerza Aérea Italiana como avión de entrenamiento avanzado, aunque también vió servicio en Argentina y Siria.

Podía alcanzar una velocidad máxima de 609 km/h a una altitud de 6400 m sobre el nivel del mar, y un techo de 12100 metros.

Podéis verlo en una visita virtual en detalle, tanto el exterior como el motor o la cabina, en Google Arts and Culture.

Y, no dudéis, de haberlo conocido antes hubiera formado parte de nuestra entrada Volando con motores del enemigo.

Fuentes

Airbus ensaya su A321XLR en un vuelo de 13h15min. La FAA le pide que modifique sus tanques de combustible extra.

Ayer Airbus realizó un vuelo de ensayos con su A321XLR, como pudo seguirse en FR24. Y, de paso, aprovecharon a dibujar en el cielo las letras XLR, que corresponden a eXtra Long Range, o alcance extra largo. El vuelo consistió en permanecer 13h 15 minutos en el aire, demostrando así su autonomía.

El A321 es la variante más larga de la familia A320. Ya vuela su variante LR, es decir, largo alcance (o Largo Radio, y así mantenemos las siglas). Y su variante XLR, un desarrollo del 321neo, tendrá las piernas aún más largas… si el alcance de un A321neo convencional es de ~6000km, el alcance del A321XLR será de ~8700km.

Conceptualmente, este avión es justo lo contrario que un A380. Si el A380 está pensado para cubrir grandes distancias entre hubs y, a partir de ellos, volar con aviones más pequeños que distribuyan el tráfico, el 321XLR es un avión ya pequeño que permite volar punto a punto de forma directa (ver filosofía punto a punto vs hub-spike). Y, actualmente, es el único reemplazo viable para los añejos 757.

La FAA requiere cambios de diseño en los tanques de combustible extra

La FAA, durante el análisis de riesgos del nuevo A321XLR previo a su certificación, ha identificado dos riesgos potenciales relacionado con su depósito central adicional. Éste se sitúa directamente bajo los pasajeros.

Uno de los riesgos tiene que ver con la comodidad del pasaje situado sobre el depósito, por un indebido aislamiento térmico, el combustible podría actuar como refrigerante, trasladando al pasaje ese frío.

El otro, mucho más grave, el riesgo de incendio.

Resumiendo la noticia aparecida en Flight Global:

Al ser áreas que no estaban previstas originalmente para transporte de combustible, el aislamiento térmico y el apantallamiento frente a las llamas puede ser insuficiente.

“Los accidentes han ilustrado la amenaza que existe debido al derrame de combustible de los tanques de combustible de los aviones dañados que resultan en incendios que penetran en la cabina”, afirma una circular de asesoramiento de la FAA sobre la instalación de aislamiento. El aislamiento térmico y acústico, dice, puede retrasar el inicio de un incendio en la cabina durante un período de tiempo «suficiente» para permitir la evacuación de los pasajeros.

Según la FAA, el diseño actual consta de paneles aislantes entre la parte superior del depósito y el piso de la cabina para contribuir al confort térmico de los pasajeros. Pero el espacio limitado y la necesidad de ventilación y de mantener los paneles de descompresión cercanos libres de obstrucciones significan que la estructura del avión no puede cumplir con los estándares de aislamiento.

“Específicamente, la FAA requerirá que la mitad inferior del fuselaje del avión, que abarca el área longitudinal del tanque, sea resistente a la penetración del fuego”, afirma.

La FAA propone que esta resistencia sea «equivalente» a la que se habría proporcionado si el fuselaje estuviera equipado con un aislamiento térmico y acústico normal, agrega, para abordar la «vulnerabilidad» de quemado. Tal resistencia podría lograrse a través de la construcción del propio tanque de combustible, dándole propiedades inherentes de penetración de llama.

Boeing ha presentado comentarios a la FAA con respecto a la solicitud de Airbus de condiciones especiales para el tanque A321XLR, solicitando que la capacidad de resistencia al fuego del tanque trasero del A321XLR sea equivalente a la los depósitos del ala, argumentando que la propuesta de la FAA, basada en la equivalencia con el aislamiento térmico del fuselaje, «no aborda» los peligros asociados con el combustible. tanques

Pero la FAA ha rechazado esto, afirmando que las condiciones especiales «no están destinadas» a garantizar que el tanque central trasero esté construido para garantizar una resistencia al fuego similar a la del área de la caja del ala, y que las condiciones especiales ya abordan las vulnerabilidades específicas del diseño del tanque de fuselaje del A321XLR.

Yak-9 de la FPAC en acción

¿Recordáis que os anunciamos que había llegado un Yak-9 la Fundación Parque Aeronáutico de Cataluña? ¡Pues por fin podemos verlo en acción!

A disfrutarlo.

El avión no es un caza original, sino una réplica construida en 1996 por la empresa rusa Strela Aircraft Co a partir de los planos y algunas piezas originales. El que se incorpora a la FPAC es el tercero de los nueve encargados por la empresa norteamericana Shadetree Aviation Inc.

El motor del avión tampoco es el original, puesto que monta un Allison V-1710 de 12 cilindros en V en lugar del Klimov M-105PF (una copia sin licencia del Hispano Suiza 12Y) original.