P-51 Mustang con motor Griffon instalado a lo P39

Perfil del Mustang FTB, vía Wikipedia

Siempre creímos que no había Mustang feo. Un caza que sufrió numerosas modificaciones, para convertirlo en avión naval, de reconocimiento, de ataque a tierra, banco de ensayos de cañones de 40mm, avión de ataque con cañones sin retroceso de 106mm… Incluso el Mustang con estatorreactores o con alas en flecha invertida tenía un aire futurista y elegante muy atractivo. Hasta que descubrimos esta versión.

Alzado, planta y perfil del Mustang FTB

Se trata de un Mustang Mark I británico, número de serie AL960 de la RAF, muy modificado.

Del Mustang X, el P-51 experimental que supuso el cambio de motorización Allison a motorización Rolls Royce, había nacido el magnífico P51-D, posiblemente el caza más conocido de la Segunda Guerra Mundial, junto con el Spitfire.

Teniendo en cuenta este éxito, Rolls Royce propuso utilizar la célula del Mustang junto con su Griffon 65, de 2000hp, y un par de hélices contrarrotatorias.

El modelo nunca recibió designación oficial, por eso se le conoce como Mustang FTB (Flying Test Bed). Esto es, Mustang banco de pruebas en vuelo.

El Ministerio de Producción Aérea proporcionó tres fuselajes Mustang Mark I, de excedentes, a Rolls Royce, que los canibalizó para construir la maqueta demostradora de su avión.

La maqueta vista frontalmente

Dado que del AL960 (un NA-83) se utilizaron fuselaje y empenaje, el Mustang FTB conservó el número de serie de éste.

Vista trasera izquierda de la maqueta

La maqueta de FTB se completó sin el motor Griffon 65 y, temporalmente, se instaló un Merlin 61, hasta que el Griffon estuvo disponible. Se mostró esta primera maqueta, con alas de madera, y tras ello el Ministerio de Producción Aérea dio el visto bueno a una segunda maqueta, más completa y desarrollada.

Dos Griffon 71 se prestaron al proyecto, y al menos uno de ellos llegó a estar instalado.

También se había obtenido el empenaje de un Tempest, posiblemente tras los resultados obtenidos en el túnel de viento, que sugerían que una mayor superficie de cola era necesaria.

El FTB fue examinado por representantes del Ministerio del Aire a principios de 1944 con muy poco entusiasmo y no se le dio prioridad al proyecto, ya había otros aviones en producción o en desarrollo que alcanzaban las prestaciones que se esperaban tener con este prototipo.

Visión artística de cómo hubiera quedado el avión en vuelo

La instalación del motor y el amplio fuselaje hubieran permitido en un futuro haber actualizado la planta motriz de motor de pistón a turbohélice. Su posición, cerca del centro de gravedad, era favorable a una mejor maniobrabilidad, actualizaciones de motor más sencillas (por no cambiar el centro de gravedad con el cambio de motor), y permitía una mejor visibilidad al piloto al situarlo cerca del morro y por delante del ala.

El avión nunca se completó. El contrato de desarrollo se dió por terminado. La maqueta fue desguazada.

Si te ha gustado, ¡Síguenos para más!

Fuentes

¡Feliz Navidad!

Como cada año, me gusta seleccionar una postal de Navidad aerotrastornada y clásica para felicitaros las fiestas. Y puesto que este enero que entra será el primer centenario del vuelo del autogiro… no quedaba más elección posible. La postal de este año, por cierto, es una de las diseñadas y enviadas a sus amigos por Amelia Earhart (AE) y George Palmer Putnam (GPP).

Así que, Feliz Navidad, Felices Vuelos, ¡Y Felices aterrizajes!

Postal vía Kansaspedia

NASA prueba rotores del octocóptero que volará en Titán

La NASA ha probado en el túnel de viento de Langley una pareja de rotores del helicóptero multirrotor que mandará a Titán, la luna de Saturno, con la misión Dragonfly.

Los investigadores simularon las condiciones previstas para el vuelo estacionario, el descenso y el ascenso, y evaluaron las cargas aerodinámicas de cada rotor con una variedad de velocidades del viento, ángulos del eje de giro y velocidades de rotación. También realizaron pruebas con un rotor en funcionamiento y el otro inmóvil para evaluar los modos de seguridad ante el fallo.

Los sensores y acelerómetros en el especimen de prueba midieron las cargas y aceleraciones en cada rotor. El análisis preliminar de los datos indica que las predicciones de CFD (computación de fluidos por ordenador) sobre el rendimiento del rotor y los requisitos de potencia son válidas, y predicciones similares para la operación en Titán están dentro de las tolerancias esperadas de la misión.

Las pruebas en esta instalación única en su tipo fueron un primer paso crucial para hacer realidad esta emocionante misión. Los datos que recopilamos en el tunel de viento nos darán una imagen mucho más clara de cómo podemos esperar que funcionen los rotores de Dragonfly en la atmósfera alienígena de Titán.

Richard Heisler, líder de ensayos en túnel de viento para Dragonfly

Se trata del helicóptero de la misión Dragon Fly. El helicóptero será un octorrotor, de 450kg, cuyo fuselaje medirá unos 2m de largo (del morro a la cola) y otros dos de ancho (del punto más externo del diámetro descrito por las palas del rotor al otro).

El lanzamiento de Dragonfly está programado para 2027, y la llegada a Titán para 2034, cuando comenzará lo que se espera sea una misión de 3 años para explorar y arrojar luz sobre la compleja química en el exótico satélite. Fue seleccionado en junio de 2019 como parte del programa New Frontiers de la NASA, que incluye la misión New Horizons a Plutón y el Cinturón de Kuiper, Juno a Júpiter y OSIRIS-REx al asteroide Bennu. Dragonfly está dirigido por la investigadora principal Elizabeth Turtle en APL, que se encuentra en Laurel, Maryland.

Se convertiría así en el segundo helicóptero en volar en una atmósfera distinta de la de la Tierra, habiendo sido el primero el Ingenuity (~2kg de masa al despegue y 1.2m de diámetro de rotor).

Las condiciones que se va a encontrar el Drafonfly en Titán son justo las contrarias que el Ingenuity en Marte. Si en Marte había que volar en una atmósfera mucho menos densa que la terrestre y con mucha menos presión, en Titán el octorrotor deberá volar en una atmósfera que se encuentra a unos -177ºC, 1.6 atmósferas de presión y que tiene una densidad de 5.9kg/m³, y 1.35m/s² de aceleración de la gravedad frente a los 15ºC, 1 atmósfera, 1.225kg/m³ y 9.81m/s² de la Tierra.

Por comparar, la gravedad de Marte es entorno a un tercio de la de la Tierra (3.72m/s² frente a los 9.81m/s²). Sin embargo ¡la densidad de la atmósfera es de un 1% la de nuestro planeta (~0.01kg /m3 frente a los 1.225kg/m3).

Así pues el diseño tiene que afrontar los problemas opuestos a los que os contamos que tenía que superar el Ingenuity: muchísima densidad y poca aceleración de la gravedad.

La sustentación depende proporcionalmente de la densidad del aire y de la velocidad de rotación de los rotores de los rotores. La sustentación ha de vencer al peso para que Dragonfly pueda volar. Al tener mucha más densidad que en Marte, no será necesario que roten tan rápido como las del Ingenuity. Así pues, como en el caso del helicóptero marciano, aunque las leyes de la aerodinámica son conocidas, tendrán que rediseñar todo, posiblemente incluso los perfiles aerodinámicos, para adaptarlos a la atmósfera de Titán.

Otros retos de la ingeniería será la elección de los materiales, puesto que sus propiedades mecánicas se degradan mucho con temperaturas tan bajas, el diseño de la electrónica, así como la navegación: como en el caso de Marte no se cuenta con una red de satélites para dotar de navegación GPS al helicóptero.

Fuentes

NASA [ -1-] y [-2-], las fotos se las he robado a Daniel Marín.

[Podcast] Elisa «Chichana» Patiño, primera aviadora española, con Elvira Menéndez (actriz, guionista y escritora)

Hoy os dejamos el último podcast del año. Y para ello contamos con una colaboración maravillosa, ¡de lujo! ni más ni menos que Elvira Menéndez, actriz, guionista y escritora, que nos cuenta la historia de Elisa «Chichana» Patiño, la primera aviadora española, aunque nunca llegara a obtener su licencia de vuelo.

El podcast se puede enontrar en Amazon Music, Apple Podcast, Google Podcast, Ivoox, Spotify

pd: Si la intro y la despedida os son familiares, que no os sorprenda. En un ejercicio de nostalgia podcasteril he hablado con Javier Lago para pedirle permiso y utlizar la introducción que hizo para el que, si no recuerdo mal, fue el primer podcast español sobre aviación: Remove Before Flight RBF podcast

El bombardero XB-70 y las versiones raras que se planearon

XB-70

Introducción

El Valkirie es posiblemente uno de los proyectos cancelados más conocidos por todos. Un bombardero que podía volar a Mach 3, con geometría de punta de ala variable… En una época en la que contar con los medios informáticos de diseño y simulación de hoy en día hubieran sido poco menos que una quimera. Y, sin embargo, volaba. Eran los años cincuenta, y en ingeniería todo o casi todo era posible, ¡y se invertía dinero en esos desarrollos por locos que parecieran!

El XB-70

Incluso antes del primer vuelo del B-58, la Fuerza Aérea estaba considerandoun sustituto que fuera más grande, más rápido, con más carga de bombas, y mejor. Emitiendo una solicitud en 1954 que surgió formalmente en 1955 como «Sistema de Armas 110 (WS-110)», que especificaba un bombardero de gran altitud y largo radio que transportaría una carga de guerra pesada y volaría a Mach 3.

Boeing y North American presentaron propuestas, pero los conceptos no eran exactamente lo que quería la Fuerza Aérea. Estos aviones habrían tenido un peso máximo al despegue de más de 450 toneladas (un millón de libras) y hubieran sido demasiado grandes para caber en los hangares existentes, dimensionados para el B-52, y hubiera complicado la logística, por su tamaño, en otras instalaciones. Las propuestas fueron rechazadas.

Ambas compañías volvieron a la mesa de dibujo y diseñaron un bombardero con una carga de bélica de 18,2 toneladas (20 000 libras) que podía volar a Mach 3 a una altitud de más de 21 kilómetros (70 000 pies), y aun así podría utilizar todas las instalaciones existentes. North American ganó en diciembre de 1957.

El diseño de la compañía, denominado B-70, tenía una configuración canard, con un fuselaje esbelto y un gran ala delta, cuyas puntas eran avatibles. Esta característica le permitía variar su geometría en vuelo, optimizando el ala para las fases del vuelo subsónicas y supersónicas.

El bombardero iba a ser propulsado por seis turborreactores General Electric J93, cada uno con un empuje de poscombustión de más de 127,5 kN (13.000 kgp / 30.000 lbf).

El tren de aterrizaje del triciclo presentaba conjuntos de tren delantero de dos ruedas y tren principal de cuatro ruedas. El avión se construiría principalmente ¡en acero inoxidable!, y se usaría titanio en secciones específicas críticas para el calor.

Pero, igual que los misiles aire-aire hicieron creer a algunos gerifaltes que no tenía sentido equipar con cañones a los cazas por ser un armamento obsoleto, el nacimiento de los misiles balísticos intercontinentales, con capacidad de portar ojivas nucleares hizo que el desarrollo de este tipo de bombarderos se viera frenado primero, cancelado después.

Eisenhower estaba muy molesto por insistencia de los generales para presionar a favor del B-70 en el Congreso. En diciembre de 1959, el programa B-70 se redujo a un solo prototipo y hasta una docena de bombarderos.

Con el cambio de presidencia las cosas no mejoraron. John F. Kennedy no estaba más entusiasmado con el B-70 que Eisenhower, y el 1 de marzo de 1961 anunció que el programa se reduciría a dos prototipos XB-70 y un avión de pre-producción YB-70.

El primer XB-70 hizo su debut en las instalaciones de North American en Palmdale, California, el 11 de mayo de 1964. Fue bautizado como Valkyrie y el prototipo inicial se designó como Air Vehicle 1 (AV / 1) , y recibió el número de serie 20001.

El Valkirie realizó su primer vuelo el 21 de septiembre de 1964. Fue ampliando su envolvente de vuelo poco a poco, superando Mach 1 por primera vez el 12 de octubre de 1964. Ya en 1965 realizó vuelos a Mach 1,4 y llegaría a superar Mach 2.

En su duodécimo vuelo, el 7 de mayo de 1965, mientras volaba a Mach 2,58, se rompió un trozo del ala y se apagaron cuatro de los seis motores. El piloto logró regresar exitosamente a pista volando con sólo dos motores. Una vez revisado y reparado, se reemplazaron los seis motores.

Para el verano de 1965 se presentaba el el AV/2, que despegaría por primera vez el 17 de julio de 1965. Las pruebas continuaron con ambos XB-70. El 14 de octubre de 1965, el AV/1 alcanzó Mach 3 a 21 kilómetros de altitud, pero sufrió daños en una de las puntas de ala. El AV / 1 nunca volvió superar Mach 2.5.

Se creyó que el AV / 2 tampoco tendría la resistencia estructural necesaria para superar Mach 3. Se planificaron vuelo de ensayo para incrementar la velocidad poco a poco. Se pensó que la mejor forma de evitar los sobre esfuerzos en el ala sería llegar a Mach 3 de forma incremental, primero sosteniendo Mach 2,8 hasta que la estructura alcanzaba su equilibrio térmico y estructural y cesaban los efectos transitorios, posteriormente se aceleraría a Mach 2,9, y se sostendría esta velocidad durante un tiempo, por los mismos motivos, para al final alcanzar Mach 3.

Tras la barrera del sonido hay que superar la barrera térmica. Las propiedades de los materiales cambian a peor y se degradan, las estructuras se deforman, y la temperatura se vuelve una barrera mucho más insalvable para superar Mach 3 que la potencia de los motores o la aerodinámica. El morro y otras partes del avión más expuestas al «choque» con el aire alcanzaban los 330 grados Celsius (625 grados Fahrenheit). El resto del avión se quedaba en sólo 232 grados Celsius. (450 grados Fahrenheit).

Para refrigerar el revestimiento se utilizaba un ingenioso sistema que involucraba al propio combustible: el combustible circulaba por las zonas críticas a refrigerar, actuando como el agua de un radiador, y llegaba a los motores convenientemente precalentado, lo que también era favorable para el motor. El espacio vacío que dejaba el combustible al irse consumiendo era rellenado con un gas inerte, nitrógeno.

El AV / 2 llegí finalmente a volar a Mach 3. Sus vuelos sirvieron también para definir las limitaciones que se impondrían posteriormente a cualquier vuelo supersónico: el ruido generado por el estampido sónico era inaceptable para la población. ¡Por eso el Concorde sólo volaba en supersónico sobre el océano!

En el vuelo número 37, en marzo de 1966, el sistema hidráulico del AV/1 falló, obligando al piloto a hacer un aterrizaje forzoso al no desplegarse de forma adecuada el tren de aterrizaje. El avión tardó 4.8km en detenerse, tras tocar el suelo.

Poco después el AV/2 sufrió un fallo similar, el 30 de abril de 1966. El tren de morro no se desplegó. El piloto realizó dos tomas y despegues, intentando que el tren de morro terminara de desplegarse por su propia inercia. Finalmente, tras varias horas de vuelo buscando soluciones, los ingenieros, en tierra, encontraron la solución y explicaron a la tripulación cómo conectar un sistema eléctrico de respaldo, puenteando un fusible con un clip, y el tren de morro se desplegó.

El 19 de mayo de 1966, AV/2 voló a Mach 3 durante 33 minutos sostenidos. La fase 1 de los ensayos se había completado. Seguirían con la segunda fase, con la NASA cada vez más involucrada en los vuelos de ensayo, durante los cuales se recogían invaluables datos.

El 8 de junio de 1966 se produciría la catástrofe, que todos conocemos, durante una sesión de fotos con otros cuatro aviones que también usaban motores General Electric.

Uno de los aviones era un F-104 Starfighter, pilotado por el conocido piloto de pruebas Joe Walker. Volaba como punto derecho del XB-70 cuando terminó la sesión de fotos. El Starfighter chocó contra el Valkirie. El F-104, que explotó matando al piloto, había dañado el XB-70. El XB-70, al comienzo, siguió volando con normalidad. Luego, la aeronave realizó dos alabeos lentos y comenzó a girar. White logró eyectarse, pero Cross cayó con el avión, que se estrelló contra el suelo unos kilómetros al norte de Barstow, California.

Sus versiones más extrañas

Por supuesto, un avión capaz de volar a esas velocidades, casi in-interceptable, y a esa altitud de vuelo, podía ocupar muchos otros nichos muy interesantes. Si se llegó a pensar en el B747 como transporte de tanques, ¿cómo no se iba a querer sacar provecho de tal maravilla tecnológica diseñando otras versiones que pudieran cubrir otras demandas distintas a las de bombardeo?

Una de las modificaciones potenciales eran para dar soporte al propio bombardero. En caso de ser desplegado a una base aérea no habitual, podría llevar un contenedor externo cargado de todo lo necesario para realizar las labores de mantenimiento mientras se encontraba en la base de dispersión o, en general, en la base no habitual.

Por supuesto, era una plataforma idónea para la experimentación de otros vehículos. ¡Qué mejor plataforma de lanzamiento de vehículos hipersónicos de investigación que un avión que ya de por sí solo podía volar a tres veces la velocidad del sonido! Algunos tipos de vehículos, como el vehículo de prueba suborbital defuselaje sustentador Martin SV-5, solo requerían carenados delanteros y traseros en lugar de un recinto completo.

Por ese mismo motivo recibió mucha atención de empresas públicas y privadas, de civiles y militares. Podía ser una buena plataforma para lanzar desde 21000 metros satélites, vehículos orbitales o suborbitales… y reemplazar los costosos cohetes y sistemas de lanzamiento balísticos por un avión reutilizable.

El relativamente pequeño X-20 Dyna-Soar podría transportarse bajo el B-70, con solo añadir un carenado ventral. Este concepto era lo suficientemente atractivo como para hacer que las pruebas en el túnel de viento fueran un requisito antes de que pudiera continuar. Con la cancelación del programa Dyna-Soar, la USAF detuvo todas las investigaciones.

Lockheed construyó el RM-81 Agena originalmente para el programa de satélites de reconocimiento WS-117L. Después de que WS-117L se dividiera en tres programas, el Agena se convirtió en un acelerador de etapa superior y portador de satélite. Lanzar el Agena desde un propulsor recuperable como un B-70 ahorraría un costo significativo en comparación con los grandes cohetes desechables de la época.

Incluso se pensó en el Valkirie como lanzador reutilizable para el Programa Gemini.

Recordáis que hubo un tiempo durante la guerra fría durante el cual siempre había tripulaciones de B-52 armados volando, por si llegaba el caso de tener que utilizar la fuerza, y que además actuaban como medida disuasoria. Pues se pensó que el Valkirie hubiera podido ser una medida mucho más disuasoria todavía, si hubiera volado en misiones similares a estas si hubiera volado armado con un silo porta misiles balísticos intercontinentales LGM-30 Minuteman II.

El muy exitoso programa X-15 hizo que se propusiera una variante con ala delta, capaz de volar aún más rápido y alto que el propio X-15. Para maximizar el potencial de este nuevo vehículo, ¿qué mejor que lanzarlo ya a Mach 3 desde el Valkirie?

El usarlo como misilero no caería en el olvido fácilmente y se propondrían distintas variaciones de la misma misión. Sobre estas líneas el concepto de porta misiles de propósito general, proponía usar una plataforma misilística común con diferentes ojivas adaptadas para diferentes objetivos similares a las armas inteligentes de hoy. Con no menos de 14 de estas armas, el B-70 estaba listo para cualquier amenaza. Debajo, un B-70 equipado con misiles GAM-87 Skybolt.

Y, siendo un avión invulnerable, ¿cómo no hacer una versión de reconocimiento? Las modificaciones necesarias para convertir el YB-70A en el RSB-70A, de reconocimiento/ataque, incluían el cambio de aviónica, la adición de cámaras de reconocimiento y la instalación de un bastidor rotativo, tipo revólver, como el que montarían bombarderos diseñados tiempo después.

El XB-70 era rápido, muy rápido. Pero eso no significaba que no se quisiera volar aún más rápido. Y para ello era necesario poder investigar con estatorreactores, e intentar llegar a tener vehículos o misiles hipersónicos, ahora tan en boga.

Y como olvidarnos de todas las conversiones que hemos visto de aviones militares a aviones ejecutivos o de transporte. El Valkirie no podía ser menos. Modificar el XB-70, un avión que ya estaba en vuelo y se conocían sus fortalezas y deficiencias, era la manera más rápida de tener un avión de pasajeros supersónico, modificando su fuselaje para incluir ventanas.

La configuración normal de asientos podría acomodar a 80 pasajeros, mientras que la de alta densidad admitía hasta 107.

Además el Valkirie podría configurarse como avión de evacuación médica de muy alta velocidad, pudiendo transportar hasta 48 heridos más el personal sanitario.

Las modificaciones incluían el fuselaje superior, para hacer hueco a los pasajeros y añadir ventanas, un área para transportar el equipaje, una puerta de carga más baja y la reducción de la cantidad de combustible que se podía transportar.

Las versiones de alta densidad y de evacuación médica tenían una clara vocación militar.

Incluso se propuso una versión puramente de carga. Se intentó demonstrar que la capacidad de carga de su transporte supersónico podía ser igual o mejor que la de transportes más grandes. Tal vez no pudiera llevar tanta carga, pero sí podía hacerlo más rápido, y cubrir más veces el mismo trayecto en el mismo tiempo.

Se plantearon distintas soluciones para cargar el avión, un morro basculante como el del C-5, puertas de carga en la panza, o el uso de contenedores cargados bajo el fuselaje.

Repostar aviones supersónicos tan rápidos como el Valkiria hubiera sido más sencillo si un avión igual actuaba de cisterna.

Para solucionar los problemas de su manejo a baja velocidad, para acortar la carrera de despegue y aterrizaje y poder utilizar pistas convencionales, se pensó en acoplar un ala Rogallo retráctil. También se pensó instalar en el F-100.

Y, por supuesto, habiendo en desarrollo aviones de pasajeros supersónicos, cazas, bombarderos así como queriendo desarrollar vehículos hipersónicos… había en desarrollo nuevos motores. Y había que ensayarlos en algún avión… la seguridad que aportaba la condición de multimotor y su alta velocidad, hacían al Valkirie ideal para este cometido…

Fuentes