La armada japonesa ha terminado de actualizar su «portaaviones» Kaga para operar F-35B

F-35B del USMC aterrizando en el Izumo, foto de Wikipedia

El mayor destructor de la Fuerza de Autodefensa Marítima de Japón, el Kaga (con un desplazamiento estándar de 19.950 toneladas), que ha sido sometido a la primera fase de modificaciones para permitir el despegue y aterrizaje de F-35B en su cubierta de vuelo, ha comenzado las pruebas en el mar. Su proa se ha vuelto cuadrada y se han pintado marcas para el despegue y aterrizaje en la cubierta, mostrando por primera vez su aspecto «de portaaviones».

Aunque técnicamente no se le llama un «portaaviones», el destructor más grande de la Fuerza de Autodefensa Marítima ha comenzado las pruebas en el mar después de modificaciones que permiten a los aviones de combate despegar y aterrizar en su cubierta de vuelo.

El Kaga partió de la Base de Kure de la Fuerza de Autodefensa Marítima en la Prefectura de Hiroshima en la mañana del 13 de noviembre, probando su velocidad y otras capacidades en las aguas de Japón.

Las modificaciones al Kaga incluyeron cambios en la proa del barco, que se hizo cuadrada, y la adición de marcas para que los aviones F-35B realicen despegues y aterrizajes en la embarcación. También se ha reforzado el aislamiento térmico de la cubierta de vuelo, para no verse afectada por el chorro de aire caliente del caza furtivo durante las maniobras de despegue o aterrizaje vertical.

El Kaga comenzó a ser modificado a finales del año fiscal 2021. La cubierta de vuelo, que originalmente era un trapecio con una proa cónica, fue cambiada a una forma cuadrada para asegurar la distancia mínima necesaria de despegue para el F-35B y reducir la turbulencia. Durante este año fiscal 2023, el Ministerio de Defensa adquirió el Sistema Conjunto de Aproximación y Aterrizaje de Precisión (JPALS, por sus siglas en inglés) de Raytheon, un sistema de asistencia de aterrizaje para los F-35B. Además, se han llevado a a cabo la remodelación de las luces de balizamiento en la cubierta de vuelo y la construcción de un dispositivo de medición de temperatura. También se modificará el sistema de comunicación por satélite. Las siguientes y últimas modificaciones, que se espera que se realicen durante la próxima gran carena del Kaga a partir del final del año fiscal 2026, incluirán cambios en los compartimentos interiores del buque.

Estos cambios le han dado al Kaga la apariencia de un «portaaviones». Aunque el gobierno japonés ha sido cuidadoso en evitar llamar a sus destructores de la clase Izumo modificados como «portaaviones», debido a la definición de fuerzas armadas para la autodefensa que aparecen en su Constitución pacifista.

La explicación del gobierno es que el destructor Kaga y su buque gemelo, el Izumo, son barcos multifuncionales que sirven como barcos de lucha anti-submarina, transporte y centros de atención médica, entre otros roles, y no están diseñados exclusivamente para transportar y lanzar aviones de combate.

El Kaga, originalmente diseñado como un portahelicópteros, fue botado en marzo de 2017, ahora tiene una apariencia similar a los buques de asalto anfibios de la clase América de la US Navy, que también carecen de sky-jump.

Con 248 metros de largo y 38 metros de ancho, es el destructor más grande de la flota de la Fuerza de Autodefensa Marítima junto con el Izumo, que da nombre a la clase.

La modificación del Kaga siguió la decisión del gobierno en 2018 de convertir, de facto, los destructores de la clase Izumo en «portaaviones», y los planes posteriores de desplegar aviones furtivos y VTOL F-35B. Éstos, serán embarcados a partir de 2024.

El Ministerio de Defensa planea desplegar los F-35B en la Base Aérea de Nyutabaru de la Fuerza de Autodefensa Aérea de Japón (JASDF) en la isla de Kyushu a partir del año fiscal 2024. Al desplegar los F-35B en Nyutabaru, Tokio tiene la intención de mejorar la capacidad de Japón para defender sus islas remotas del sur, incluyendo aquellas cerca de las disputadas Islas Senkaku/Diaoyu. Estas islas están controladas por Japón, pero son reclamadas por China y Taiwán.

El Ministerio de Defensa planea adquirir un total de 42 F-35B, junto con 105 F-35A.

El Izumo también ha completado la primera fase de su actualización, que incluyó el refuerzo de la resistencia al calor y la pintura de las marcas.

Fuentes: Asahi, Naval News

Cazado en vídeo el primer vuelo del B-21 Raider

El sustituto del B-2 nos tiene cautivados a todos los aerotrastornados y analistas de defensa desde que supimos de su existencia. Y hoy, el foto periodista freelance Matt Harman nos ha dado la sorpresa publicando en su cuenta de twitter una foto y un vídeo del primer vuelo del B-21 Raider.

El vídeo compartido por Hartman muestra el B-21, indicativo de radio RAIDER 33, despegando de la Planta 42 en Mojave, con un F-16 de laUSAF en formación cerrada, como escolta y aparato de observación, ¡así que esperamos que poco a poco vayan apareciendo cada vez más fotos del avión!

Como el despegue fue filmado desde lejos y de alguna manera debajo del avión, todavía es difícil determinar algunas de las características geométricas del nuevo bombardero, incluida la disposición de su planta motriz, que hasta el día de hoy sigue siendo una incertidumbre.

Parece ser que el primer vuelo estaba previsto para ayer, pero que no se realizó por algunos problemas técnicos no especificados, dice The Aviationist.

El avión despegó a las 6:51 a.m. locales, según Reuters. Los líderes de la Fuerza Aérea no dieron publicidad al primer vuelo del B-21, pero unas tres docenas de aerotrastornados y spotters se reunieron esta mañana alrededor de la Planta 42, en Mojave, con la esperanza de ver al bombardero surcar los cielos.

También segun Reuters, se prevé que cada uno de los aviones cueste aproximadamente 550 millones de dólares, en dólares de 2010, o alrededor de 750 millones de dólares en dólares actuales ajustados a la inflación. Sin embargo, la USAF ha mantenido clasificada cualquier otra información sobre precios, «lo que dificulta la validación del costo propuesto», dijo el Servicio de Investigación del Congreso en un informe de 2021.

La USAF planea comprar al menos 100 aviones y comenzar a reemplazar los bombarderos B-1 y B-2. Actualmente se están fabricando seis aviones más de ensayos. Se están construyendo en la misma línea, utilizando las herramientas, procesos y técnicas que se utilizarán para los aviones de serie (aunque lo normal es que la producción de estos prototipos sirvan para afinar estos utillajes y procedimientos y se produzcan cambios).

Fotos en más alta resolución

Y ya sabes, si te ha gustado ¡síguenos!

¿Cómo refrigerar un vehículo hipersónico? Haciéndolo sudar.

Los investigadores de RTX validan la «refrigeración por transpiración» en una prueba para DARPA.

Tras la barrera del sonido está la barrera del calor. De sobra son conocidos los problemas de algunas de las aeronaves más rápidas porque en frío «sudan» combustible, y hasta que no han calentado sus materiales por la fricción con la atmósfera y éstos no se han dilatado no se sellan las juntas entre los paneles. También es conocido los problemas de temperatura en el parabrisas del SR-71 o del X-15. Pues imaginad si quisiéramos volar aún más rápido.

Los misiles o los vehículos hipersónicos pueden desplazarse a través de la atmósfera a velocidades superiores a 5 veces la del sonido. Pero a esas velocidades, las cosas se calientan tanto que muchos materiales se derretirían. Y los que no se funden, se deforman mucho.

«Pasas de algo afilado a algo más redondeado», dijo John Sharon del Centro de Investigación Tecnológica de RTX, «y cuando pasas de afilado a redondeado, aumentas la resistencia y terminas ralentizando el vehículo, lo que afecta a cuán rápido y lejos podemos volar».

La Agencia de Proyectos de Investigación Avanzada de Defensa (DARPA) quiere resolver ese problema, por lo que pidió a investigadores de todo el país sus ideas.

Sharon y su equipo tenían una idea simple pero intrigante: hacer que el misil sude.

Así como los humanos usamos los poros para enfriar nuestros cuerpos, el equipo buscaba demostrar que los poros artificiales, llamados canales de refrigeración por transpiración, en la punta del misil podrían hacer lo mismo.

«La refrigeración por transpiración ha existido durante años. La naturaleza ya lo ha descubierto: los árboles lo usan y nosotros usamos nuestra piel», dijo Sharon. «Pero, ¿cómo lo aprovechamos para otras aplicaciones de ingeniería?».

A DARPA le gustó la idea y otorgó al centro de investigación un contrato para modelar, prototipar y probar su concepto junto con otros equipos universitarios e industriales en el marco del programa MACH.

«Cuando surgió la oportunidad, hicimos algunos cálculos rápidos y dijimos: ‘¿Esto parece que funcionará?’ y la respuesta fue ‘Sí'», dijo Sharon. «Entonces fue realmente cuestión de profundizar y hacer una modelización y simulación detallada».

Su concepto funciona colocando un compuesto en la punta del misil que se calienta y genera vapor. El gas luego se empuja a través de miles de finos capilares de transpiración.

El prototipo de pruebas es una pieza en forma de cuña de metal resistente al calor y es ligeramente más grande que una tarjeta de crédito. Para hacer los canales de enfriamiento lo más pequeños y eficientes posible, el equipo de Sharon colaboró con Collins Aerospace, una empresa de RTX, utilizando su experiencia en micromecanizado, un método avanzado de fabricación que utiliza láseres para crear piezas intrincadas.

Para demostrar que funcionaría, el equipo primero probó la cuña en un dispositivo quemador en el centro de investigación en East Hartford, Connecticut.

«Básicamente, es una gran antorcha de crème brûlée», dijo Sharon.

El dispositivo de quemador dirige una antorcha alimentada con gas natural y oxígeno hacia el prototipo de pruebas para imitar los cambios de temperatura que ocurrirían a velocidades hipersónicas. Una vez que el equipo tuvo confianza en el rendimiento del prototipo, realizaron pruebas más detalladas en una instalación que utiliza un arco eléctrico para calentar y expandir gases a altas temperaturas y velocidades, simulando las condiciones de vuelo muy rápido.

Los ensayos ofrecieron resultados preliminares de que el concepto funcionaría, pero Sharon dijo que necesitarán más investigación y mejoras antes de que la refrigeración por transpiración esté lista para ser utilizada en misiles hipersónicos. Los desafíos restantes incluyen descubrir cómo hacer que los canales sean aún más pequeños y determinar si sus hallazgos en un prototipo del tamaño de una tarjeta de crédito son escalables a un vehículo hipersónico de tamaño completo.

Sharon dijo que cree que lo que han aprendido podría tener aplicaciones para varios productos de RTX, incluyendo la refrigeración de las palas de la turbina de los motores de las aeronaves, y demostró que su modelización predictiva era fiable.

«Cuando vuelas a más de cinco veces la velocidad del sonido, la temperatura puede aumentar muy rápidamente, en una fracción de segundo», dijo Sharon. «Las personas del equipo involucradas en la modelización hicieron un trabajo increíble estimando cuánto tiempo sobreviviría el prototipo».

Encontrar respuestas a preguntas como esta es por lo que Sharon se unió al centro de investigación. Después de obtener su doctorado, lo vio como una oportunidad para aplicar investigaciones de vanguardia en la industria aeroespacial y de defensa.

«Demostrarlo en el laboratorio ha sido genial», dijo. «El siguiente paso siempre es tratar de decir: ‘¿Cómo podría un cliente adaptar esto y rendir mejor?'»

Fuentes: RTX, vía Space Daily

Imágenes de los dos AG600M anfibios chinos de maniobras

China continúa con los ensayos de sus dos aviones anfibios de gran tamaño. Esta vez se les ha visto haciendo maniobras, simulando misiones realistas, integrándose con el resto de las unidades con las que en teoría colaborarán en un futuro, cuando estén en servicio. Además son las primeras fotos que, al menos en Sandglass Patrol, vemos con las dos aeronaves juntas.

El AG600M, turbohélice de cuatrimotor de Avic, continuará sometiéndose a pruebas de vuelo y en tierra este año a medida que avanza hacia la obtención de la certificación de aeronavegabilidad. En la primera mitad de 2023, el programa de prueba AG600 completó 172 misiones de vuelo con tres aviones, acumulando 430 horas de vuelo. Estos ensayos se llevaron a cabo en varias ciudades chinas, incluidas Zhuhai, Pucheng, Jingmen, Anshun, Liupanshui y Xichang.

El primer prototipo voló por primera vez el 30 de agosto de 2022, y el segundo el 10 de septiembre. El primer despegue desde el agua se producía a mediados de septiembre de 2022.

Después de esta aprobación anticipada, se espera que entre en servicio anti incendios este año en China, que la CAAC lo certifique en 2024 y que se comercialice fuera de China a partir de 2025.

  • Características
    • Capacidad: 50 rescatados o 12000kg de agua
    • Longitud: 36,9 m
    • Envergadura: 38,8 m
    • Altura: 12,1 m
    • Peso máximo al despegue:
      • 53 500 kg desde tierra
      • 49 800 kg desde mar agitado
    • Planta motriz: 4 × turbohélices WJ-6
  • Prestaciones
    • Velocidad máxima: 560 km/h (350 mph, 300 nudos)
    • Velocidad de crucero rápido: 500 km/h (310 mph, 270 nudos)
    • Alcance: 4500 km (2800 mi, 2400 nmi)
    • Autonomía: 12h
    • Techo de servicio: 6.000 m (20.000 pies)
    • Carrera de despegue: 1500 m (4900 pies) de agua

Vía @knktlw

Regent desarrollará un «ekranoplano» para el USMC por 4.75M$

Regent Craft es una compañía que hemos venido siguiendo en este blog desde que vimos por primera vez su propuesta de vehículo de efecto suelo eléctrico (WIG en inglés, más conocido de forma popular como ekranoplano por los desarrollos soviéticos).

El aparato es un diseño peculiar, que une un casco con hidrofoil al que llama SeaGlider. Aparentemente ha tenico cierto predicamento en Hawai, donde podría llegar a realizar enlace entre islas. El proyecto ha avanzado poco a poco, con la presentación de una maqueta a escala 1:1, a todas luces con fines comerciales y para lograr inversores, y con el vuelo de un demostrador tecnológico a escala, radio controlado.

Además cuenta entre sus inversores con Lockheed Martin. Esta inversión iría orientada a desarrollar una versión militar del Regent Viceroy, pues los seagliders satisfacen una necesidad reconocida dentro del Departamento de Defensa de los EE. UU. de movilidad de alta velocidad y que no dependa de pistas de aterrizaje, bajo costo y baja firma en los litorales. De hecho esa descripción se corresponde con las necesidades descritas por DARPA en la definición de su Liberty Lifter.

Y ahora, además, ha firmado un contrato con el Cuerpo de Marines de Estados Unidos.

REGENT firma un acuerdo de $4.75 millones con el Cuerpo de Marines de los Estados (nota de prensa)

El 18 de octubre de 2023 Regent, el fabricante de seagliders totalmente eléctricos para la movilidad marítima sostenible, anunció hoy que ha firmado un acuerdo con el Laboratorio de Combate del Cuerpo de Marines (MCWL) para demostrar la tecnología Seaglider en operaciones logísticas de defensa.

REGENT es una empresa orgullosa de uso dual, y estamos emocionados de comenzar este trabajo con el USMC como primer paso para construir seagliders que apoyen a los miembros de nuestro país en entornos marítimos disputados. Desplegar rápidamente tecnología que aborde la creciente necesidad de capacidades de salto de isla en el Indo-Pacífico es fundamental para REGENT. Si bien la amenaza es existencial, nos motiva el hecho de que nuestro vehículo podría salvar vidas o desempeñar un papel en disuadir conflictos por completo.

Billy Thalheimer, co-fundador y CEO de REGENT

Los seagliders son embarcaciones de efecto suelo e hydrofoiling que operan exclusivamente en el ámbito marítimo. Abordan una brecha reconocida dentro del Departamento de Defensa de los Estados Unidos para la movilidad de alta velocidad, bajo costo, baja firma y sin necesidad de pistas en las áreas litorales y cumplen una variedad de misiones, incluyendo transporte de tropas y carga, operaciones avanzadas de bases expedicionarias y comunicaciones.

El seaglider Viceroy de REGENT puede transportar 12 pasajeros o 3500 libras de carga y viajar hasta 180 millas con una sola carga. «En las áreas litorales tenemos que movernos, y la gestión de la firma es crítica», dijo el General Retirado Robert Neller, quien se desempeñó como el 37º Comandante del Cuerpo de Marines y ahora forma parte del Consejo Asesor de Defensa de REGENT. «Los seagliders de REGENT proporcionan la capacidad de distribuir múltiples capacidades en las áreas litorales, incluyendo logística, comando y control y ISR. Las capacidades de los seagliders de REGENT crearán éxito».

Los objetivos del programa son validar la capacidad del seaglider para operar en cada uno de sus modos de operación de casco, ala y foiling, informar sobre la reducción de riesgos y los requisitos de certificación a nivel de embarcación, y comprender el potencial del vehículo en operaciones militares, incluyendo maniobra y operaciones de transporte. El programa culminará en una demostración técnica en vivo del prototipo a escala real durante un ejercicio a gran escala organizado por el Gobierno de los Estados Unidos.

¿Relacionado con el programa Liberty Lifter de DARPA?

El programa de DARPA centra el foco en tres aspectos:

  • Operaciones marítimas ampliadas: Se hará hincapié en el funcionamiento en estados de mar turbulentos mediante la creación de capacidades STOL para reducir la carga de impacto de las olas durante el despegue/aterrizaje y nuevas soluciones de diseño para absorber las fuerzas de las olas. Además, el proyecto abordará los riesgos de colisión del vehículo durante el funcionamiento a alta velocidad en entornos congestionados. Por último, el objetivo es que el vehículo funcione en el mar durante semanas, sin actividades de mantenimiento en tierra.
  • Fácil industrialización a gran escala y bajo coste: La construcción dará prioridad a los diseños sencillos y baratos de fabricar frente a los conceptos complejos y de bajo peso. Los materiales deben ser más asequibles que los de la fabricación tradicional de aviones y estar disponibles para ser comprados en grandes cantidades.
  • Controles complejos de vuelo y en el mar: Se desarrollarán sensores y esquemas de control avanzados para evitar las grandes olas y gestionar las interacciones aerodinámicas e hidrodinámicas durante el despegue y el aterrizaje.

Los conceptos de diseño los están desarrollando General Atomics y Aurora FS, y en principio se superpone bastante con las especificaciones del sea glider de Regent, excepto en un punto, el tamaño. El Regent tiene un tamaño más bien reducido, las imágenes del programa Liberty Lifter de DARPA muestran grandes vehículos de efecto suelo, capaces de transportar incluso vehículos de gran tonelaje, así que este proyecto con el cuerpo de marines más bien parece algo complementario al de DARPA.