La USAF publica nuevas fotos del B-21 durante su campaña de ensayos en vuelo

El B-21 es el «bombardero del futuro» de la USAF, desarrollado por Northrop-Grumman, para reemplazar a los B-1 y B-2, ¡pero no a los B-52!. Como era de esperar en un programa de avión furtivo, ha estado envuelto de un secretismo total, y las fotos se han ido liberando con cuentagotas. Hasta que se presentó en sociedad y realizó su primer vuelo, y por fin los spotters más privilegiados inundaron las redes con sus capturas. Y ayer la USAF liberó tres fotos más, tomadas durante la campaña de ensayos en vuelo, junto con esta nota de prensa.

B-21 Raider continúa las pruebas de vuelo y la producción

Tras su presentación formal, el 2 de diciembre de 2022, el B-21 Raider comenzó las pruebas de vuelo en la Base de la Fuerza Aérea Edwards, donde continúa avanzando para convertirse en la columna vertebral de la flota de bombarderos de la Fuerza Aérea de EE.UU.

Durante su declaración ante el Comité de Servicios Armados del Senado, Andrew Hunter, subsecretario de Adquisiciones, Tecnología y Logística de la Fuerza Aérea, destacó que las pruebas de vuelo del B-21 están en camino de cumplir con los plazos y entregarse al caza el 8 de mayo.

«El programa de pruebas de vuelo está avanzando bien», dijo Hunter en respuesta a una pregunta sobre el programa B-21. «Está haciendo aquello para lo que están diseñados los programas de pruebas de vuelo, lo que nos ayuda a conocer las características únicas de esta plataforma, pero de una manera muy, muy efectiva».

Hunter explicó que este es el primer avión que es más digital que no, lo que contribuye a que el programa cumpla con los requisitos.

El B-21 es un bombardero furtivo, de largo alcance y con alta capacidad de supervivencia que reemplazará gradualmente a los bombarderos B-1 y B-2 y desempeñará un papel importante en el apoyo a los objetivos de seguridad nacional y la seguridad de los aliados y socios de Estados Unidos en todo el mundo.

El sistema de armas B-21 se fabrica según el contrato de la Fuerza Aérea con Northrop Grumman. Está diseñado con una arquitectura de sistemas abierta, lo que permite la rápida inserción de tecnologías maduras y permite que la aeronave siga siendo eficaz a medida que las amenazas evolucionan con el tiempo. Se espera que el avión entre en servicio a mediados de la década de 2020 con un objetivo de producción de un mínimo de 100 aviones.

La Oficina de Capacidades Rápidas de la Fuerza Aérea gestiona el programa de adquisiciones, centrándose en hacer que los aviones de prueba sean lo más representativos posible de la producción. Los aviones de prueba se construyen en la misma línea de fabricación y utilizan la misma tripulación y herramientas que se utilizarán en la producción final.

La estrategia de AFRCO incluye construir aviones de prueba lo más representativos posible de la producción. En lugar de un enfoque de prototipo de vuelo tradicional, los aviones de prueba B-21 se construyen incluyendo sistemas de misión utilizando los mismos procesos de fabricación y herramientas que los aviones de producción. Este enfoque en desarrollo sentó las bases para que la producción comenzara más rápidamente.

Cuando el B-21 entre en servicio, Ellsworth AFB, Dakota del Sur, será la primera base de operaciones principal del B-21 y la ubicación de la unidad de entrenamiento formal. Whiteman AFB, Missouri, y Dyess AFB, Texas, son las ubicaciones preferidas para las bases restantes y recibirán aviones a medida que estén disponibles.

Aurora da más detalles de su demostrador VTOL de ala y fuselaje integrados (BWB)

Los aviones con el diseño de ala integrada en el fuselaje o BWB (por Blended Wing Body) están pegando fuerte otra vez. Como este concepto de Aurora, subsidiaria de Boeing, para DARPA que presentamos en noviembre de 2023.

El diseño, aún sin nombre «X» asignado, es parte del esfuerzo que está realizando últimamente Estados Unidos en el desarrollo de aviones experimentales (o X-Planes). Éste, fomentado por el Pentágono, busca aunar la velocidad de crucero de los aviones de ala fija, lo bueno de los diseños BWB (baja resistencia aerodinámica y gran capacidad de carga interior) con lo mejor de los aviones de despegue y aterrizaje vertical (VTOL), como poder despegar de cualquier sitio o volar a punto fijo Por eso para DARPA es SPRINT (Speed and Runway Independent Technologies — Tecnologías Independientes de Velocidad y Pista).

La última representación de la nave no tripulada, publicada el 20 de mayo, muestra un diseño BWB, ya conocido anteriormente, con una gran cola en forma de V y dos tomas de aire montadas baja a cada lado del morro. Más tres compuertas en el ala-fuselaje que carenan las hélices entubadas de sustentación, que permiten las operaciones VTOL —El Pentágono define aeronave STOL como aquella que puede aterrizar y despegar en 450m salvando los obstáculos estándar definidos por la norma (15.2m en la cabecera en despegue y 12.2 en aterrizaje)—, o SSTOL (despegues y aterrizajes super cortos, que necesitan más espacio que los anteriores, pero consumen menos combustible). El tren de aterrizaje, convencional, también permite los despegues y aterrizajes rodados, como en una aeronave normal, muy útiles en caso de tener pista de sobra, para poder despegar con más carga a igual consumo de combustible, o consumir mucho menos, a igualdad de carga.

Sin ofrecer detalles específicos, Aurora dice que el diseño «aprovecha soluciones de motor existentes», lo que, según la empresa, acortará el plazo de desarrollo y reducirá el riesgo de ingeniería.

DARPA ha fijado un objetivo de velocidad de 400-450kt (740-830 km/h).

Los nuevos detalles de diseño llegan menos de dos semanas después de que el diseño de Aurora fuera elegido por DARPA como la primera propuesta en avanzar a la última etapa de la competencia SPRINT, llamada Fase 1B, equivalente a decir que se les ha autorizado a proseguir hasta la fase de PDR (Preliminary Design Review o revisión preliminar de diseño)

Aurora dice que espera completar esta fase en 12 meses y tener un prototipo funcional listo para volar en 36 meses.

Las ventajas y desventajas de estos aviones las hemos discutido en muchas ocasiones. Claro, que las desventajas son básicamente para los diseños civiles que transportan personas: que posiblemente no cumplan los tiempos mínimos de evacuación por la distancia a las puertas, mareos en los alabeos, falta de ventanas para los que van en el centro… mientras que las ventajas son las de siempre: un volumen interno grande, genial relación sustentación/resistencia, bajo consumo.

Pero en este caso, tratándose de la DARPA, y la configuración que muestra la el artista en su visión conceptual, parece que poco tiene que ver con un avión de aerolínea. Vemos tres grandes compuertas para los fanes de sustentación, que le permitirían las operaciones VTOL. Y una gran zona central, sin ventanas, entre las tomas de los motores y los timones verticales. Boeing ya había presentado alguna patente para aviones de carga BWB, Jet Zero ha recibido hace poco el certificado de aeronavegabilidad para su BWB que plantean como avión cisterna y transporte militar, y sabemos que USA está pensando en los futuros aviones de transporte militar. Aurora dice que busca demostrar una «capacidad de cambio de paradigma para la movilidad aérea» con su aeronave SPRINT.

Ninguno de los otros competidores del programa (Bell, Piasecki Aircraft y Northrop Grumman), ha sido aprobado aún para la Fase 1B.

Fuente: Nota de prensa de Aurora:

Un UAV de la USAF basado en un motovelero Stemme, que vuela 80h sin parar, desplegado en Medio Oriente

El ULTRA (Unmanned Long-Endurance Tactical Reconnaissance Aircraft — «Aeronave Táctica de Reconocimiento de Larga Duración No Tripulada») de la Fuerza Aérea de los Estados Unidos hizo una rara aparición en una ubicación no revelada en el Medio Oriente, que algunos usuarios de Twitter han identificado como la base aérea de Al Dhafra, en Emiratos Árabes Unidos. Que se sepa, esta sería la primera vez que se despliega.

Las fotos fueron publicadas en DVIDS (Defense Visual Information Distribution Service), de donde ya han sido eliminadas, después de que la ubicación no identificada fuera reconocida.

Para la vigilancia, tanto Rusia como Estados Unidos utilizan drones MALE/HALE (Medium Altitude/High Altitude Long Endurance) como el MQ-9 Predator, el MQ-4 Global Hawk. Pero en entornos disputados y con alta atrición, reemplazar las plataformas de varios millones de dólares se convierte en un asunto peliagudo, y muy caro. Además, su pérdida también representaría una relación coste-beneficio desfavorable, especialmente cuando son derribados por simples misiles antiaéreos que cuestan menos de un millón de dólares.

Los aviones no tripulados, que nacieron para ser soluciones económicas que no pusieran en peligro vidas humanas en misiones peligrosas, sucias (riesgos NBQ), o tediosas, han tenido éxito, pero ahora mismo son de todo menos económicos. Una historia paralela a la que se vivió con los cazas en el siglo XX, cada vez más caros y pesados, finalmente fue necesario convocar un concurso de cazas ligeros, que dio lugar al F-16. Y ahora se está intentando desarrollar plataformas de inteligencia, mucho más económicas, de desarrollo más rápido, y a ser posible basadas en plataformas ya industrializadas y producidas en serie.

El ULTRA está basado en un motovelero (TMG Tourism Motor Glider) Stemme, aparentemente el S10, pero con hélice no retráctil.

Los motoveleros de Stemme han sido utilizados en varias conversiones a avión no tripulado de vigilancia, debido a sus estupendas prestaciones (gran diseño del ala, buena aerodinámica del fuselaje, resistencia aerodinámica reducida), como el Safran/Sagem Patroller francés o el Stemme ASP S15 alemán.

El modelo estadounidense se desarrolló en menos de diez meses. Los requisitos, además de la gran autonomía (llega a las 80h), era partir de una plataforma simple, ya industrializada, y cuya producción se pudiera escalar fácilmente a bajo coste. La masa de los pilotos es reemplazada por la de la aviónica de navegación y control y por los sensores y sistemas ópticos.

La integración de sensores Electro-Ópticos/Infrarrojos (EO-IR) y de Radiofrecuencia (RF) de bajo costo es posible debido a las altitudes de operación más bajas que, por lo que no requieren ópticas grandes o RF de alta potencia. Y la integración es sencilla, gracias a la espaciosa cabina diseñada para dos pilotos, dando lugar así a un drone de inteligencia, vigilancia y reconocimiento (ISR) que permanece en el aire durante días. Aunque puede ser derribado, el misil de defensa aérea también revela su posición y esta información puede ser transmitida. Pero su pérdida y su reposición no será tan costosa como en otras plataformas de desarrollo dedicado específico.

Este concepto, por cierto, lo venimos defendiendo hace muchos años en el blog, y hace menos en el podcast: ahorrar costes en el desarrollo de una plataforma dedicada y específica y emplear una célula comercial, probada, y producida en serie, ya industrializada, e invertir en llenarla con sistemas, y producir el avión en masa, para poder probarlo en servicio y poder desarrollar doctrinas para su uso y modificarlo rápidamente con las lecciones aprendidas, precisamente con ese presupuesto que se ha ahorrado utilizando células ya probadas e industrializadas.

Hay quien piensa que estos requisitos han sido validados por la guerra en Ucrania y el punto conflictivo emergente en el Asia-Pacífico, donde China está aprendiendo lecciones de los éxitos y fracasos de Moscú y Kiev. Rusia y Ucrania han estado utilizando drones simples, y disponibles comercialmente, para todo, desde el reconocimiento táctico básico en el campo de batalla y la corrección del fuego de artillería, hasta su conversión en munición merodeadora. Y no solo con drones de pequeño tamaño, ¡también con aviones ultraligeros!

Asumiendo que no nos equivocamos al identificar la célula como perteneciente a un Stemme S10, y que sus características no hab variado gran cosa al ser modificado, el tamaño y las características serían:

  • Longitud: 8.42 m (27 ft 7 in)
  • Envergadura: 23.00 m (75 ft 6 in) (excluding winglets)
  • Altura: 1.80 m (5 ft 11 in)
  • Superficie Alar: 18.70 m2 (201 sq ft)
  • Alargamiento alar: 28.3
  • Peso en vacío: 645 kg (1,422 lb)
  • Peso al despegue: 850 kg (1,874 lb)
  • Motor: 1 × Rotax 914 F2/S1 115cv
  • Velocidad de crucero: 259 km/h (161 mph, 140 kn)
  • Velocidad de pérdida: 78 km/h (48 mph, 42 kn)
  • VNE: 270 km/h (168 mph, 146 kn)
  • Alcance: 1,730 km (1,075 mi, 934 nmi)
  • Techo de servicio: 9,140 m (30,000 ft)
  • Límites: +5.3/-2.65 Gs
  • Máximo planeo: 50:1

Las fotos nos han llegado vía The War Zone y The Aviationist, y AFRL

Aurora sigue en solitario desarrollando un ekranoplano para el programa DARPA Liberty Lifter

Concepto de Aurora

Aurora Flight Sciences continuará diseñando el Liberty Lifter para el ejército de EE. UU., que ha descartado oficialmente la propuesta de General Atomics.

El Pentágono anunció el jueves 9 de mayo que Aurora, una subsidiaria de Boeing con sede en Virginia ha recibido una ampliación del contrato por valor de 8.3 millones de dólares.

Una de las imágenes que dejó ver Aurora de su concepto
Boeing Pelikan

La propuesta de Aurora, sobre estas líneas, tenía una configuración bastante normal, con un fuselaje y ala alta, y flotadores de punta de plano para estabilizar el avión en el agua. Y comentábamos que bebía de la experiencia de Boeing en el desarrollo de su Pelikan, pues el proyecto cuenta con la participación de ingenieros que trabajaron en este vehículo, de la casa matriz de Aurora, Boeing.

El concepto de General Atomics era de doble casco, para mayor estabilidad en el agua, con propulsión distribuida utilizando doce turbohélices, similar al diseño conceptual que publicó DARPA en su nota de prensa original.

General Atomics trabajaba con Maritime Applied Physics Corporation y Aurora Flight Sciences con Gibbs & Cox y ReconCraft.

Propuesta de General Atomics
Vídeo original de presentación de DARPA

Hace casi exactamente dos años, el 19 de mayo de 2022, conocíamos por primera vez el programa Liberty Lifter de DARPA, para desarrollar un vehículo de efecto suelo (WIG – Wing in Ground Vehicle) o ekranoplano. Un año después conocimos que habían sido seleccionados Aurora y General Atomics para continuar con el desarrollo de sus propuestas.

Inicialmente, DARPA imaginó que Liberty Lifter tendría aproximadamente el mismo tamaño y capacidad que un C-17 Globemaster, pero desde entonces ha reducido el tamaño del demostrador hasta el de un C-130 Hércules. Sin embargo, los documentos presupuestarios de DARPA para el año fiscal 2025 muestran que un futuro Liberty Lifter más grande podría construirse escalando el tamaño del demostrador tecnológico hasta el de un C-17.

Como hemos comentado en el podcast con nuestro amigo Carlos en más de una ocasión, creemos que el teatro de operaciones estadounidense del futuro va a ser marítimo, concretamente en la zona de Taiwan, así que necesita vehículos que pueda desplazarse a gran velocidad hasta la isla. Y esta aeronave, pensada para no volar más que rascando el agua, podría ser una buena solución: gran capacidad de carga a alta velocidad. Y además, DARPA solicitaba que fuera con materiales no habituales en aeronáutica, así que imaginamos que se estará pensando en acero inoxidable, más resistente a ambientes marítimos que el aluminio.

El programa centra el foco en tres aspectos:

  • Operaciones marítimas ampliadas: Se hará hincapié en el funcionamiento en estados de mar turbulentos mediante la creación de capacidades STOL para reducir la carga de impacto de las olas durante el despegue/aterrizaje y nuevas soluciones de diseño para absorber las fuerzas de las olas. Además, el proyecto abordará los riesgos de colisión del vehículo durante el funcionamiento a alta velocidad en entornos congestionados. Por último, el objetivo es que el vehículo funcione en el mar durante semanas, sin actividades de mantenimiento en tierra.
  • Fácil industrialización a gran escala y bajo coste: La construcción dará prioridad a los diseños sencillos y baratos de fabricar frente a los conceptos complejos y de bajo peso. Los materiales deben ser más asequibles que los de la fabricación tradicional de aviones y estar disponibles para ser comprados en grandes cantidades.
  • Controles complejos de vuelo y en el mar: Se desarrollarán sensores y esquemas de control avanzados para evitar las grandes olas y gestionar las interacciones aerodinámicas e hidrodinámicas durante el despegue y el aterrizaje.

Los objetivos incluyen el despegue y el aterrizaje en el estado del mar 4, la operación sostenida en el agua hasta el estado del mar 5 y operar como ekranoplano o vehículo de efecto suelo y como avión, con un techo de 10000ft sobre el mar (ASL).

vía Defense News

De moto voladora a drone multipropósito, también con misiles

Razor P100 con misiles Hellfire

Mayman Aerospace se hizo conocida hace unos años por su concetpo de «moto» voladora. Una aeronave para la famosa nueva movilidad aérea o movilidad aérea urbana sin cabina, y cuya posición de pilotaje recuerda mucho a la de las motos, de ahí lo de «moto voladora».

Contaba con ocho motores a reacción, montados en cuatro pods orientables y unas pequeñas alas embrionarias. Y, a partir de este concepto, bastante poco eficiente si de consumo de combustible hablamos y con un mercado muy reducido, han desarrollado otro que posiblemente tenga mucho más futuro: el de un avión no tripulado de despegue vertical multifunción, llamado Razor P100.

La moto voladora de Mayman, también llamada Razor

Lo han presentado en forma de avión no tripulado de despegue y aterrizaje vertical, de alta velocidad subsónica. Vamos, un VTOL que vuela a 800km/h.

Razor P100 de carga

El diseño es modular, con un fuselaje tipo cuerpo sustentador, o eso parece, y unas pequeñas alas en flecha. En el fuselaje se soportan cuatro cunas basculantes para otros tantos turborreactores, lo que permite la operación VTOL a este drone.

Razor P100 entregando bienes de primera necesidad médica en un entorno disputado

Parece que su diseño modular lo hace fácilmente adaptable a diversos tipos de misiones, desde la de carga, incluso de material tan sensible como el médico, a reconocimiento, blanco aéreo de prácticas, munición merodeadora, o UCAV (vehículo aéreo no tripulado de comabate). También parece que puede actuar en enjambre, de forma colaborativa, trabajando en equipo con otros Razor que pueden realizar funciones de ISR, o designación de blancos.

Razor P100 de reconocimiento

El avión fue presentado la semana pasada, durante la SOF Week de Tampa, donde también pudimos ver a los marines en paramotor.

Dos P100 distintos trabajando de forma colaborativa, dentro de un enjambre de hasta 1000 drones

Según la compañía, la carga que puede transportar varía de 45 a 450kg, tanto interna como externamente, en función de la versión. Y podría operar en un pequeño cuadrado de 3×3 metros. Además, por seguridad, va equipado con un paracaídas de recuperación balístico.

Razor P100 como blanco aéreo

El sistema de navegación y control Skyfield, desarrollado íntegramente por la compañía, cuenta con inteligencia artificial, lo que le ayuda a esquivar obstáculos o proseguir con su misión en situaciones de denegación de GPS, ¡y dicen que puede manejar enjambres de hasta 1000 drones!

Una de las grandes ventajas del diseño es que funciona con un motor que se puede alimentar con cualquier combustible pesado, esto es desde queroseno a diésel de los camiones, lo que simplifica mucho la logística de combustible a la hora de transportarlo.

Fuente: Mayman Aerospace, vía Linkedin